Copied to
clipboard

G = C2×C217D4order 336 = 24·3·7

Direct product of C2 and C217D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C217D4, C427D4, C232D21, C223D42, D427C22, C42.37C23, Dic214C22, (C2×C6)⋊8D14, C2116(C2×D4), (C2×C14)⋊11D6, C63(C7⋊D4), (C22×C6)⋊2D7, C143(C3⋊D4), (C22×C14)⋊4S3, (C22×C42)⋊2C2, (C2×C42)⋊9C22, (C2×Dic21)⋊4C2, (C22×D21)⋊3C2, C6.37(C22×D7), C14.37(C22×S3), C2.10(C22×D21), C74(C2×C3⋊D4), C34(C2×C7⋊D4), SmallGroup(336,203)

Series: Derived Chief Lower central Upper central

C1C42 — C2×C217D4
C1C7C21C42D42C22×D21 — C2×C217D4
C21C42 — C2×C217D4
C1C22C23

Generators and relations for C2×C217D4
 G = < a,b,c,d | a2=b21=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 672 in 108 conjugacy classes, 43 normal (19 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C7, C2×C4, D4, C23, C23, Dic3, D6, C2×C6, C2×C6, C2×C6, D7, C14, C14, C14, C2×D4, C21, C2×Dic3, C3⋊D4, C22×S3, C22×C6, Dic7, D14, C2×C14, C2×C14, C2×C14, D21, C42, C42, C42, C2×C3⋊D4, C2×Dic7, C7⋊D4, C22×D7, C22×C14, Dic21, D42, D42, C2×C42, C2×C42, C2×C42, C2×C7⋊D4, C2×Dic21, C217D4, C22×D21, C22×C42, C2×C217D4
Quotients: C1, C2, C22, S3, D4, C23, D6, D7, C2×D4, C3⋊D4, C22×S3, D14, D21, C2×C3⋊D4, C7⋊D4, C22×D7, D42, C2×C7⋊D4, C217D4, C22×D21, C2×C217D4

Smallest permutation representation of C2×C217D4
On 168 points
Generators in S168
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 100)(8 101)(9 102)(10 103)(11 104)(12 105)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 91)(20 92)(21 93)(22 114)(23 115)(24 116)(25 117)(26 118)(27 119)(28 120)(29 121)(30 122)(31 123)(32 124)(33 125)(34 126)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 112)(42 113)(43 144)(44 145)(45 146)(46 147)(47 127)(48 128)(49 129)(50 130)(51 131)(52 132)(53 133)(54 134)(55 135)(56 136)(57 137)(58 138)(59 139)(60 140)(61 141)(62 142)(63 143)(64 154)(65 155)(66 156)(67 157)(68 158)(69 159)(70 160)(71 161)(72 162)(73 163)(74 164)(75 165)(76 166)(77 167)(78 168)(79 148)(80 149)(81 150)(82 151)(83 152)(84 153)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 56 35 75)(2 55 36 74)(3 54 37 73)(4 53 38 72)(5 52 39 71)(6 51 40 70)(7 50 41 69)(8 49 42 68)(9 48 22 67)(10 47 23 66)(11 46 24 65)(12 45 25 64)(13 44 26 84)(14 43 27 83)(15 63 28 82)(16 62 29 81)(17 61 30 80)(18 60 31 79)(19 59 32 78)(20 58 33 77)(21 57 34 76)(85 145 118 153)(86 144 119 152)(87 143 120 151)(88 142 121 150)(89 141 122 149)(90 140 123 148)(91 139 124 168)(92 138 125 167)(93 137 126 166)(94 136 106 165)(95 135 107 164)(96 134 108 163)(97 133 109 162)(98 132 110 161)(99 131 111 160)(100 130 112 159)(101 129 113 158)(102 128 114 157)(103 127 115 156)(104 147 116 155)(105 146 117 154)
(1 94)(2 93)(3 92)(4 91)(5 90)(6 89)(7 88)(8 87)(9 86)(10 85)(11 105)(12 104)(13 103)(14 102)(15 101)(16 100)(17 99)(18 98)(19 97)(20 96)(21 95)(22 119)(23 118)(24 117)(25 116)(26 115)(27 114)(28 113)(29 112)(30 111)(31 110)(32 109)(33 108)(34 107)(35 106)(36 126)(37 125)(38 124)(39 123)(40 122)(41 121)(42 120)(43 157)(44 156)(45 155)(46 154)(47 153)(48 152)(49 151)(50 150)(51 149)(52 148)(53 168)(54 167)(55 166)(56 165)(57 164)(58 163)(59 162)(60 161)(61 160)(62 159)(63 158)(64 147)(65 146)(66 145)(67 144)(68 143)(69 142)(70 141)(71 140)(72 139)(73 138)(74 137)(75 136)(76 135)(77 134)(78 133)(79 132)(80 131)(81 130)(82 129)(83 128)(84 127)

G:=sub<Sym(168)| (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,144)(44,145)(45,146)(46,147)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,161)(72,162)(73,163)(74,164)(75,165)(76,166)(77,167)(78,168)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,56,35,75)(2,55,36,74)(3,54,37,73)(4,53,38,72)(5,52,39,71)(6,51,40,70)(7,50,41,69)(8,49,42,68)(9,48,22,67)(10,47,23,66)(11,46,24,65)(12,45,25,64)(13,44,26,84)(14,43,27,83)(15,63,28,82)(16,62,29,81)(17,61,30,80)(18,60,31,79)(19,59,32,78)(20,58,33,77)(21,57,34,76)(85,145,118,153)(86,144,119,152)(87,143,120,151)(88,142,121,150)(89,141,122,149)(90,140,123,148)(91,139,124,168)(92,138,125,167)(93,137,126,166)(94,136,106,165)(95,135,107,164)(96,134,108,163)(97,133,109,162)(98,132,110,161)(99,131,111,160)(100,130,112,159)(101,129,113,158)(102,128,114,157)(103,127,115,156)(104,147,116,155)(105,146,117,154), (1,94)(2,93)(3,92)(4,91)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,105)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,119)(23,118)(24,117)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,108)(34,107)(35,106)(36,126)(37,125)(38,124)(39,123)(40,122)(41,121)(42,120)(43,157)(44,156)(45,155)(46,154)(47,153)(48,152)(49,151)(50,150)(51,149)(52,148)(53,168)(54,167)(55,166)(56,165)(57,164)(58,163)(59,162)(60,161)(61,160)(62,159)(63,158)(64,147)(65,146)(66,145)(67,144)(68,143)(69,142)(70,141)(71,140)(72,139)(73,138)(74,137)(75,136)(76,135)(77,134)(78,133)(79,132)(80,131)(81,130)(82,129)(83,128)(84,127)>;

G:=Group( (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,100)(8,101)(9,102)(10,103)(11,104)(12,105)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,91)(20,92)(21,93)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,144)(44,145)(45,146)(46,147)(47,127)(48,128)(49,129)(50,130)(51,131)(52,132)(53,133)(54,134)(55,135)(56,136)(57,137)(58,138)(59,139)(60,140)(61,141)(62,142)(63,143)(64,154)(65,155)(66,156)(67,157)(68,158)(69,159)(70,160)(71,161)(72,162)(73,163)(74,164)(75,165)(76,166)(77,167)(78,168)(79,148)(80,149)(81,150)(82,151)(83,152)(84,153), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,56,35,75)(2,55,36,74)(3,54,37,73)(4,53,38,72)(5,52,39,71)(6,51,40,70)(7,50,41,69)(8,49,42,68)(9,48,22,67)(10,47,23,66)(11,46,24,65)(12,45,25,64)(13,44,26,84)(14,43,27,83)(15,63,28,82)(16,62,29,81)(17,61,30,80)(18,60,31,79)(19,59,32,78)(20,58,33,77)(21,57,34,76)(85,145,118,153)(86,144,119,152)(87,143,120,151)(88,142,121,150)(89,141,122,149)(90,140,123,148)(91,139,124,168)(92,138,125,167)(93,137,126,166)(94,136,106,165)(95,135,107,164)(96,134,108,163)(97,133,109,162)(98,132,110,161)(99,131,111,160)(100,130,112,159)(101,129,113,158)(102,128,114,157)(103,127,115,156)(104,147,116,155)(105,146,117,154), (1,94)(2,93)(3,92)(4,91)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,105)(12,104)(13,103)(14,102)(15,101)(16,100)(17,99)(18,98)(19,97)(20,96)(21,95)(22,119)(23,118)(24,117)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,108)(34,107)(35,106)(36,126)(37,125)(38,124)(39,123)(40,122)(41,121)(42,120)(43,157)(44,156)(45,155)(46,154)(47,153)(48,152)(49,151)(50,150)(51,149)(52,148)(53,168)(54,167)(55,166)(56,165)(57,164)(58,163)(59,162)(60,161)(61,160)(62,159)(63,158)(64,147)(65,146)(66,145)(67,144)(68,143)(69,142)(70,141)(71,140)(72,139)(73,138)(74,137)(75,136)(76,135)(77,134)(78,133)(79,132)(80,131)(81,130)(82,129)(83,128)(84,127) );

G=PermutationGroup([[(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,100),(8,101),(9,102),(10,103),(11,104),(12,105),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,91),(20,92),(21,93),(22,114),(23,115),(24,116),(25,117),(26,118),(27,119),(28,120),(29,121),(30,122),(31,123),(32,124),(33,125),(34,126),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,112),(42,113),(43,144),(44,145),(45,146),(46,147),(47,127),(48,128),(49,129),(50,130),(51,131),(52,132),(53,133),(54,134),(55,135),(56,136),(57,137),(58,138),(59,139),(60,140),(61,141),(62,142),(63,143),(64,154),(65,155),(66,156),(67,157),(68,158),(69,159),(70,160),(71,161),(72,162),(73,163),(74,164),(75,165),(76,166),(77,167),(78,168),(79,148),(80,149),(81,150),(82,151),(83,152),(84,153)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,56,35,75),(2,55,36,74),(3,54,37,73),(4,53,38,72),(5,52,39,71),(6,51,40,70),(7,50,41,69),(8,49,42,68),(9,48,22,67),(10,47,23,66),(11,46,24,65),(12,45,25,64),(13,44,26,84),(14,43,27,83),(15,63,28,82),(16,62,29,81),(17,61,30,80),(18,60,31,79),(19,59,32,78),(20,58,33,77),(21,57,34,76),(85,145,118,153),(86,144,119,152),(87,143,120,151),(88,142,121,150),(89,141,122,149),(90,140,123,148),(91,139,124,168),(92,138,125,167),(93,137,126,166),(94,136,106,165),(95,135,107,164),(96,134,108,163),(97,133,109,162),(98,132,110,161),(99,131,111,160),(100,130,112,159),(101,129,113,158),(102,128,114,157),(103,127,115,156),(104,147,116,155),(105,146,117,154)], [(1,94),(2,93),(3,92),(4,91),(5,90),(6,89),(7,88),(8,87),(9,86),(10,85),(11,105),(12,104),(13,103),(14,102),(15,101),(16,100),(17,99),(18,98),(19,97),(20,96),(21,95),(22,119),(23,118),(24,117),(25,116),(26,115),(27,114),(28,113),(29,112),(30,111),(31,110),(32,109),(33,108),(34,107),(35,106),(36,126),(37,125),(38,124),(39,123),(40,122),(41,121),(42,120),(43,157),(44,156),(45,155),(46,154),(47,153),(48,152),(49,151),(50,150),(51,149),(52,148),(53,168),(54,167),(55,166),(56,165),(57,164),(58,163),(59,162),(60,161),(61,160),(62,159),(63,158),(64,147),(65,146),(66,145),(67,144),(68,143),(69,142),(70,141),(71,140),(72,139),(73,138),(74,137),(75,136),(76,135),(77,134),(78,133),(79,132),(80,131),(81,130),(82,129),(83,128),(84,127)]])

90 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A···6G7A7B7C14A···14U21A···21F42A···42AP
order122222223446···677714···1421···2142···42
size1111224242242422···22222···22···22···2

90 irreducible representations

dim111112222222222
type++++++++++++
imageC1C2C2C2C2S3D4D6D7C3⋊D4D14D21C7⋊D4D42C217D4
kernelC2×C217D4C2×Dic21C217D4C22×D21C22×C42C22×C14C42C2×C14C22×C6C14C2×C6C23C6C22C2
# reps114111233496121824

Matrix representation of C2×C217D4 in GL5(𝔽337)

3360000
0336000
0033600
00010
00001
,
10000
033633600
01000
000193143
00015934
,
10000
01985900
019813900
000144336
000178193
,
10000
0336000
01100
0001931
000159144

G:=sub<GL(5,GF(337))| [336,0,0,0,0,0,336,0,0,0,0,0,336,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,336,1,0,0,0,336,0,0,0,0,0,0,193,159,0,0,0,143,34],[1,0,0,0,0,0,198,198,0,0,0,59,139,0,0,0,0,0,144,178,0,0,0,336,193],[1,0,0,0,0,0,336,1,0,0,0,0,1,0,0,0,0,0,193,159,0,0,0,1,144] >;

C2×C217D4 in GAP, Magma, Sage, TeX

C_2\times C_{21}\rtimes_7D_4
% in TeX

G:=Group("C2xC21:7D4");
// GroupNames label

G:=SmallGroup(336,203);
// by ID

G=gap.SmallGroup(336,203);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,218,964,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^21=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽