extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.(C3×S3) = C33.Dic3 | φ: C3×S3/C3 → C6 ⊆ Aut C18 | 108 | | C18.(C3xS3) | 324,100 |
C18.2(C3×S3) = Dic3×3- 1+2 | φ: C3×S3/S3 → C3 ⊆ Aut C18 | 36 | 6 | C18.2(C3xS3) | 324,95 |
C18.3(C3×S3) = C3×Dic27 | φ: C3×S3/C32 → C2 ⊆ Aut C18 | 108 | 2 | C18.3(C3xS3) | 324,10 |
C18.4(C3×S3) = C27⋊C12 | φ: C3×S3/C32 → C2 ⊆ Aut C18 | 108 | 6- | C18.4(C3xS3) | 324,12 |
C18.5(C3×S3) = C6×D27 | φ: C3×S3/C32 → C2 ⊆ Aut C18 | 108 | 2 | C18.5(C3xS3) | 324,65 |
C18.6(C3×S3) = C2×C27⋊C6 | φ: C3×S3/C32 → C2 ⊆ Aut C18 | 54 | 6+ | C18.6(C3xS3) | 324,67 |
C18.7(C3×S3) = C3×C9⋊Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C18 | 108 | | C18.7(C3xS3) | 324,96 |
C18.8(C3×S3) = He3.4Dic3 | φ: C3×S3/C32 → C2 ⊆ Aut C18 | 108 | 6- | C18.8(C3xS3) | 324,101 |
C18.9(C3×S3) = C2×He3.4S3 | φ: C3×S3/C32 → C2 ⊆ Aut C18 | 54 | 6+ | C18.9(C3xS3) | 324,147 |
C18.10(C3×S3) = Dic3×C27 | central extension (φ=1) | 108 | 2 | C18.10(C3xS3) | 324,11 |
C18.11(C3×S3) = S3×C54 | central extension (φ=1) | 108 | 2 | C18.11(C3xS3) | 324,66 |
C18.12(C3×S3) = Dic3×C3×C9 | central extension (φ=1) | 108 | | C18.12(C3xS3) | 324,91 |