Extensions 1→N→G→Q→1 with N=C18 and Q=C3×S3

Direct product G=N×Q with N=C18 and Q=C3×S3
dρLabelID
S3×C3×C18108S3xC3xC18324,137

Semidirect products G=N:Q with N=C18 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C18⋊(C3×S3) = C2×C33.S3φ: C3×S3/C3C6 ⊆ Aut C1854C18:(C3xS3)324,146
C182(C3×S3) = C2×S3×3- 1+2φ: C3×S3/S3C3 ⊆ Aut C18366C18:2(C3xS3)324,141
C183(C3×S3) = C6×C9⋊S3φ: C3×S3/C32C2 ⊆ Aut C18108C18:3(C3xS3)324,142

Non-split extensions G=N.Q with N=C18 and Q=C3×S3
extensionφ:Q→Aut NdρLabelID
C18.(C3×S3) = C33.Dic3φ: C3×S3/C3C6 ⊆ Aut C18108C18.(C3xS3)324,100
C18.2(C3×S3) = Dic3×3- 1+2φ: C3×S3/S3C3 ⊆ Aut C18366C18.2(C3xS3)324,95
C18.3(C3×S3) = C3×Dic27φ: C3×S3/C32C2 ⊆ Aut C181082C18.3(C3xS3)324,10
C18.4(C3×S3) = C27⋊C12φ: C3×S3/C32C2 ⊆ Aut C181086-C18.4(C3xS3)324,12
C18.5(C3×S3) = C6×D27φ: C3×S3/C32C2 ⊆ Aut C181082C18.5(C3xS3)324,65
C18.6(C3×S3) = C2×C27⋊C6φ: C3×S3/C32C2 ⊆ Aut C18546+C18.6(C3xS3)324,67
C18.7(C3×S3) = C3×C9⋊Dic3φ: C3×S3/C32C2 ⊆ Aut C18108C18.7(C3xS3)324,96
C18.8(C3×S3) = He3.4Dic3φ: C3×S3/C32C2 ⊆ Aut C181086-C18.8(C3xS3)324,101
C18.9(C3×S3) = C2×He3.4S3φ: C3×S3/C32C2 ⊆ Aut C18546+C18.9(C3xS3)324,147
C18.10(C3×S3) = Dic3×C27central extension (φ=1)1082C18.10(C3xS3)324,11
C18.11(C3×S3) = S3×C54central extension (φ=1)1082C18.11(C3xS3)324,66
C18.12(C3×S3) = Dic3×C3×C9central extension (φ=1)108C18.12(C3xS3)324,91

׿
×
𝔽