Copied to
clipboard

G = C2×He3.4S3order 324 = 22·34

Direct product of C2 and He3.4S3

direct product, metabelian, supersoluble, monomial

Aliases: C2×He3.4S3, He3.7D6, 3- 1+25D6, C9.(S3×C6), C9⋊S36C6, (C3×C18)⋊7S3, (C3×C18)⋊6C6, (C3×C9)⋊11D6, C18.9(C3×S3), C32.8(S3×C6), C9○He32C22, (C2×He3).13S3, (C2×3- 1+2)⋊4S3, (C2×C9⋊S3)⋊5C3, (C3×C9)⋊7(C2×C6), C3.4(C6×C3⋊S3), C6.8(C3×C3⋊S3), (C3×C6).21(C3×S3), (C2×C9○He3)⋊1C2, C32.6(C2×C3⋊S3), (C3×C6).14(C3⋊S3), SmallGroup(324,147)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C2×He3.4S3
C1C3C32C3×C9C9○He3He3.4S3 — C2×He3.4S3
C3×C9 — C2×He3.4S3
C1C2

Generators and relations for C2×He3.4S3
 G = < a,b,c,d,e,f | a2=b3=c3=d3=f2=1, e3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=bc-1, be=eb, fbf=b-1, cd=dc, ce=ec, fcf=c-1, de=ed, df=fd, fef=c-1e2 >

Subgroups: 457 in 93 conjugacy classes, 32 normal (20 characteristic)
C1, C2, C2, C3, C3, C22, S3, C6, C6, C9, C9, C9, C32, C32, D6, C2×C6, D9, C18, C18, C18, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C9, C3×C9, He3, 3- 1+2, 3- 1+2, D18, S3×C6, C2×C3⋊S3, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C3×C18, C3×C18, C2×He3, C2×3- 1+2, C2×3- 1+2, C9○He3, C6×D9, C2×C32⋊C6, C2×C9⋊C6, C2×C9⋊S3, He3.4S3, C2×C9○He3, C2×He3.4S3
Quotients: C1, C2, C3, C22, S3, C6, D6, C2×C6, C3×S3, C3⋊S3, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C6×C3⋊S3, He3.4S3, C2×He3.4S3

Smallest permutation representation of C2×He3.4S3
On 54 points
Generators in S54
(1 52)(2 53)(3 54)(4 46)(5 47)(6 48)(7 49)(8 50)(9 51)(10 35)(11 36)(12 28)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 41)(20 42)(21 43)(22 44)(23 45)(24 37)(25 38)(26 39)(27 40)
(1 42 33)(2 43 34)(3 44 35)(4 45 36)(5 37 28)(6 38 29)(7 39 30)(8 40 31)(9 41 32)(10 54 22)(11 46 23)(12 47 24)(13 48 25)(14 49 26)(15 50 27)(16 51 19)(17 52 20)(18 53 21)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)
(10 16 13)(11 17 14)(12 18 15)(19 22 25)(20 23 26)(21 24 27)(28 34 31)(29 35 32)(30 36 33)(37 40 43)(38 41 44)(39 42 45)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 54)(9 53)(10 40)(11 39)(12 38)(13 37)(14 45)(15 44)(16 43)(17 42)(18 41)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 36)(27 35)

G:=sub<Sym(54)| (1,52)(2,53)(3,54)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,35)(11,36)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,41)(20,42)(21,43)(22,44)(23,45)(24,37)(25,38)(26,39)(27,40), (1,42,33)(2,43,34)(3,44,35)(4,45,36)(5,37,28)(6,38,29)(7,39,30)(8,40,31)(9,41,32)(10,54,22)(11,46,23)(12,47,24)(13,48,25)(14,49,26)(15,50,27)(16,51,19)(17,52,20)(18,53,21), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,54)(9,53)(10,40)(11,39)(12,38)(13,37)(14,45)(15,44)(16,43)(17,42)(18,41)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,36)(27,35)>;

G:=Group( (1,52)(2,53)(3,54)(4,46)(5,47)(6,48)(7,49)(8,50)(9,51)(10,35)(11,36)(12,28)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,41)(20,42)(21,43)(22,44)(23,45)(24,37)(25,38)(26,39)(27,40), (1,42,33)(2,43,34)(3,44,35)(4,45,36)(5,37,28)(6,38,29)(7,39,30)(8,40,31)(9,41,32)(10,54,22)(11,46,23)(12,47,24)(13,48,25)(14,49,26)(15,50,27)(16,51,19)(17,52,20)(18,53,21), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54), (10,16,13)(11,17,14)(12,18,15)(19,22,25)(20,23,26)(21,24,27)(28,34,31)(29,35,32)(30,36,33)(37,40,43)(38,41,44)(39,42,45), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,54)(9,53)(10,40)(11,39)(12,38)(13,37)(14,45)(15,44)(16,43)(17,42)(18,41)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,36)(27,35) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,46),(5,47),(6,48),(7,49),(8,50),(9,51),(10,35),(11,36),(12,28),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,41),(20,42),(21,43),(22,44),(23,45),(24,37),(25,38),(26,39),(27,40)], [(1,42,33),(2,43,34),(3,44,35),(4,45,36),(5,37,28),(6,38,29),(7,39,30),(8,40,31),(9,41,32),(10,54,22),(11,46,23),(12,47,24),(13,48,25),(14,49,26),(15,50,27),(16,51,19),(17,52,20),(18,53,21)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54)], [(10,16,13),(11,17,14),(12,18,15),(19,22,25),(20,23,26),(21,24,27),(28,34,31),(29,35,32),(30,36,33),(37,40,43),(38,41,44),(39,42,45)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,54),(9,53),(10,40),(11,39),(12,38),(13,37),(14,45),(15,44),(16,43),(17,42),(18,41),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,36),(27,35)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F6A6B6C6D6E6F6G6H6I6J9A9B9C9D···9K18A18B18C18D···18K
order122233333366666666669999···918181818···18
size112727233666233666272727272226···62226···6

42 irreducible representations

dim111111222222222266
type+++++++++++
imageC1C2C2C3C6C6S3S3S3D6D6D6C3×S3C3×S3S3×C6S3×C6He3.4S3C2×He3.4S3
kernelC2×He3.4S3He3.4S3C2×C9○He3C2×C9⋊S3C9⋊S3C3×C18C3×C18C2×He3C2×3- 1+2C3×C9He33- 1+2C18C3×C6C9C32C2C1
# reps121242112112626233

Matrix representation of C2×He3.4S3 in GL6(𝔽19)

1800000
0180000
0018000
0001800
0000180
0000018
,
0018100
11171800
0018010
0018001
0018000
1018000
,
0180000
1180000
10181800
0181000
10001818
0180010
,
100000
010000
000100
11181800
11001818
000010
,
14170000
2120000
20121700
01721400
20001217
01700214
,
0180000
1800000
0000180
18180011
0018000
18181100

G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,1,0,0,0,1,0,1,0,0,0,0,18,17,18,18,18,18,1,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,1,1,0,1,0,18,18,0,18,0,18,0,0,18,1,0,0,0,0,18,0,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[1,0,0,1,1,0,0,1,0,1,1,0,0,0,0,18,0,0,0,0,1,18,0,0,0,0,0,0,18,1,0,0,0,0,18,0],[14,2,2,0,2,0,17,12,0,17,0,17,0,0,12,2,0,0,0,0,17,14,0,0,0,0,0,0,12,2,0,0,0,0,17,14],[0,18,0,18,0,18,18,0,0,18,0,18,0,0,0,0,18,1,0,0,0,0,0,1,0,0,18,1,0,0,0,0,0,1,0,0] >;

C2×He3.4S3 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3._4S_3
% in TeX

G:=Group("C2xHe3.4S3");
// GroupNames label

G:=SmallGroup(324,147);
// by ID

G=gap.SmallGroup(324,147);
# by ID

G:=PCGroup([6,-2,-2,-3,-3,-3,-3,3171,453,2164,1096,7781]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=f^2=1,e^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,d*e=e*d,d*f=f*d,f*e*f=c^-1*e^2>;
// generators/relations

׿
×
𝔽