Extensions 1→N→G→Q→1 with N=C4×D7 and Q=S3

Direct product G=N×Q with N=C4×D7 and Q=S3
dρLabelID
C4×S3×D7844C4xS3xD7336,147

Semidirect products G=N:Q with N=C4×D7 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×D7)⋊1S3 = D125D7φ: S3/C3C2 ⊆ Out C4×D71684-(C4xD7):1S3336,145
(C4×D7)⋊2S3 = D14.D6φ: S3/C3C2 ⊆ Out C4×D71684+(C4xD7):2S3336,146
(C4×D7)⋊3S3 = D7×D12φ: S3/C3C2 ⊆ Out C4×D7844+(C4xD7):3S3336,148
(C4×D7)⋊4S3 = D6.D14φ: S3/C3C2 ⊆ Out C4×D71684(C4xD7):4S3336,144

Non-split extensions G=N.Q with N=C4×D7 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×D7).1S3 = D7×Dic6φ: S3/C3C2 ⊆ Out C4×D71684-(C4xD7).1S3336,137
(C4×D7).2S3 = C28.32D6φ: S3/C3C2 ⊆ Out C4×D71684(C4xD7).2S3336,26
(C4×D7).3S3 = D7×C3⋊C8φ: trivial image1684(C4xD7).3S3336,23

׿
×
𝔽