Copied to
clipboard

G = D7×D12order 336 = 24·3·7

Direct product of D7 and D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×D12, C281D6, D61D14, C124D14, D8410C2, C843C22, Dic73D6, D14.10D6, D421C22, C42.12C23, C31(D4×D7), C42(S3×D7), C211(C2×D4), C71(C2×D12), (C4×D7)⋊3S3, (C3×D7)⋊1D4, (C7×D12)⋊3C2, (C12×D7)⋊3C2, C7⋊D123C2, (S3×C14)⋊1C22, C6.12(C22×D7), C14.12(C22×S3), (C3×Dic7)⋊4C22, (C6×D7).10C22, (C2×S3×D7)⋊1C2, C2.15(C2×S3×D7), SmallGroup(336,148)

Series: Derived Chief Lower central Upper central

C1C42 — D7×D12
C1C7C21C42C6×D7C2×S3×D7 — D7×D12
C21C42 — D7×D12
C1C2C4

Generators and relations for D7×D12
 G = < a,b,c,d | a7=b2=c12=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 788 in 108 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C6, C7, C2×C4, D4, C23, C12, C12, D6, D6, C2×C6, D7, D7, C14, C14, C2×D4, C21, D12, D12, C2×C12, C22×S3, Dic7, C28, D14, D14, C2×C14, S3×C7, C3×D7, D21, C42, C2×D12, C4×D7, D28, C7⋊D4, C7×D4, C22×D7, C3×Dic7, C84, S3×D7, C6×D7, S3×C14, D42, D4×D7, C7⋊D12, C12×D7, C7×D12, D84, C2×S3×D7, D7×D12
Quotients: C1, C2, C22, S3, D4, C23, D6, D7, C2×D4, D12, C22×S3, D14, C2×D12, C22×D7, S3×D7, D4×D7, C2×S3×D7, D7×D12

Smallest permutation representation of D7×D12
On 84 points
Generators in S84
(1 53 68 77 18 37 30)(2 54 69 78 19 38 31)(3 55 70 79 20 39 32)(4 56 71 80 21 40 33)(5 57 72 81 22 41 34)(6 58 61 82 23 42 35)(7 59 62 83 24 43 36)(8 60 63 84 13 44 25)(9 49 64 73 14 45 26)(10 50 65 74 15 46 27)(11 51 66 75 16 47 28)(12 52 67 76 17 48 29)
(1 36)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 69)(14 70)(15 71)(16 72)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(37 59)(38 60)(39 49)(40 50)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(73 79)(74 80)(75 81)(76 82)(77 83)(78 84)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 22)(14 21)(15 20)(16 19)(17 18)(23 24)(25 34)(26 33)(27 32)(28 31)(29 30)(35 36)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(49 56)(50 55)(51 54)(52 53)(57 60)(58 59)(61 62)(63 72)(64 71)(65 70)(66 69)(67 68)(73 80)(74 79)(75 78)(76 77)(81 84)(82 83)

G:=sub<Sym(84)| (1,53,68,77,18,37,30)(2,54,69,78,19,38,31)(3,55,70,79,20,39,32)(4,56,71,80,21,40,33)(5,57,72,81,22,41,34)(6,58,61,82,23,42,35)(7,59,62,83,24,43,36)(8,60,63,84,13,44,25)(9,49,64,73,14,45,26)(10,50,65,74,15,46,27)(11,51,66,75,16,47,28)(12,52,67,76,17,48,29), (1,36)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,69)(14,70)(15,71)(16,72)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(37,59)(38,60)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,34)(26,33)(27,32)(28,31)(29,30)(35,36)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,62)(63,72)(64,71)(65,70)(66,69)(67,68)(73,80)(74,79)(75,78)(76,77)(81,84)(82,83)>;

G:=Group( (1,53,68,77,18,37,30)(2,54,69,78,19,38,31)(3,55,70,79,20,39,32)(4,56,71,80,21,40,33)(5,57,72,81,22,41,34)(6,58,61,82,23,42,35)(7,59,62,83,24,43,36)(8,60,63,84,13,44,25)(9,49,64,73,14,45,26)(10,50,65,74,15,46,27)(11,51,66,75,16,47,28)(12,52,67,76,17,48,29), (1,36)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,69)(14,70)(15,71)(16,72)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(37,59)(38,60)(39,49)(40,50)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,22)(14,21)(15,20)(16,19)(17,18)(23,24)(25,34)(26,33)(27,32)(28,31)(29,30)(35,36)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,62)(63,72)(64,71)(65,70)(66,69)(67,68)(73,80)(74,79)(75,78)(76,77)(81,84)(82,83) );

G=PermutationGroup([[(1,53,68,77,18,37,30),(2,54,69,78,19,38,31),(3,55,70,79,20,39,32),(4,56,71,80,21,40,33),(5,57,72,81,22,41,34),(6,58,61,82,23,42,35),(7,59,62,83,24,43,36),(8,60,63,84,13,44,25),(9,49,64,73,14,45,26),(10,50,65,74,15,46,27),(11,51,66,75,16,47,28),(12,52,67,76,17,48,29)], [(1,36),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,69),(14,70),(15,71),(16,72),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(37,59),(38,60),(39,49),(40,50),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(73,79),(74,80),(75,81),(76,82),(77,83),(78,84)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,22),(14,21),(15,20),(16,19),(17,18),(23,24),(25,34),(26,33),(27,32),(28,31),(29,30),(35,36),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(49,56),(50,55),(51,54),(52,53),(57,60),(58,59),(61,62),(63,72),(64,71),(65,70),(66,69),(67,68),(73,80),(74,79),(75,78),(76,77),(81,84),(82,83)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C7A7B7C12A12B12C12D14A14B14C14D···14I21A21B21C28A28B28C42A42B42C84A···84F
order122222223446667771212121214141414···1421212128282842424284···84
size116677424222142141422222141422212···124444444444···4

45 irreducible representations

dim1111112222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2S3D4D6D6D6D7D12D14D14S3×D7D4×D7C2×S3×D7D7×D12
kernelD7×D12C7⋊D12C12×D7C7×D12D84C2×S3×D7C4×D7C3×D7Dic7C28D14D12D7C12D6C4C3C2C1
# reps1211121211134363336

Matrix representation of D7×D12 in GL4(𝔽337) generated by

109100
25119400
0010
0001
,
19430300
8614300
003360
000336
,
1000
0100
00292244
00290
,
1000
0100
000244
003080
G:=sub<GL(4,GF(337))| [109,251,0,0,1,194,0,0,0,0,1,0,0,0,0,1],[194,86,0,0,303,143,0,0,0,0,336,0,0,0,0,336],[1,0,0,0,0,1,0,0,0,0,292,29,0,0,244,0],[1,0,0,0,0,1,0,0,0,0,0,308,0,0,244,0] >;

D7×D12 in GAP, Magma, Sage, TeX

D_7\times D_{12}
% in TeX

G:=Group("D7xD12");
// GroupNames label

G:=SmallGroup(336,148);
// by ID

G=gap.SmallGroup(336,148);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-7,116,50,490,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^12=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽