Extensions 1→N→G→Q→1 with N=C21 and Q=C2×C8

Direct product G=N×Q with N=C21 and Q=C2×C8
dρLabelID
C2×C168336C2xC168336,109

Semidirect products G=N:Q with N=C21 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
C211(C2×C8) = D7×C3⋊C8φ: C2×C8/C4C22 ⊆ Aut C211684C21:1(C2xC8)336,23
C212(C2×C8) = S3×C7⋊C8φ: C2×C8/C4C22 ⊆ Aut C211684C21:2(C2xC8)336,24
C213(C2×C8) = D21⋊C8φ: C2×C8/C4C22 ⊆ Aut C211684C21:3(C2xC8)336,25
C214(C2×C8) = C8×D21φ: C2×C8/C8C2 ⊆ Aut C211682C21:4(C2xC8)336,90
C215(C2×C8) = D7×C24φ: C2×C8/C8C2 ⊆ Aut C211682C21:5(C2xC8)336,58
C216(C2×C8) = S3×C56φ: C2×C8/C8C2 ⊆ Aut C211682C21:6(C2xC8)336,74
C217(C2×C8) = C2×C21⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C21336C21:7(C2xC8)336,95
C218(C2×C8) = C6×C7⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C21336C21:8(C2xC8)336,63
C219(C2×C8) = C14×C3⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C21336C21:9(C2xC8)336,79


׿
×
𝔽