Extensions 1→N→G→Q→1 with N=C14 and Q=C4×S3

Direct product G=N×Q with N=C14 and Q=C4×S3
dρLabelID
S3×C2×C28168S3xC2xC28336,185

Semidirect products G=N:Q with N=C14 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C141(C4×S3) = C2×D21⋊C4φ: C4×S3/Dic3C2 ⊆ Aut C14168C14:1(C4xS3)336,156
C142(C4×S3) = C2×C4×D21φ: C4×S3/C12C2 ⊆ Aut C14168C14:2(C4xS3)336,195
C143(C4×S3) = C2×S3×Dic7φ: C4×S3/D6C2 ⊆ Aut C14168C14:3(C4xS3)336,154

Non-split extensions G=N.Q with N=C14 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C14.1(C4×S3) = D21⋊C8φ: C4×S3/Dic3C2 ⊆ Aut C141684C14.1(C4xS3)336,25
C14.2(C4×S3) = D42.C4φ: C4×S3/Dic3C2 ⊆ Aut C141684C14.2(C4xS3)336,28
C14.3(C4×S3) = D42⋊C4φ: C4×S3/Dic3C2 ⊆ Aut C14168C14.3(C4xS3)336,44
C14.4(C4×S3) = Dic21⋊C4φ: C4×S3/Dic3C2 ⊆ Aut C14336C14.4(C4xS3)336,46
C14.5(C4×S3) = C8×D21φ: C4×S3/C12C2 ⊆ Aut C141682C14.5(C4xS3)336,90
C14.6(C4×S3) = C56⋊S3φ: C4×S3/C12C2 ⊆ Aut C141682C14.6(C4xS3)336,91
C14.7(C4×S3) = C4×Dic21φ: C4×S3/C12C2 ⊆ Aut C14336C14.7(C4xS3)336,97
C14.8(C4×S3) = C42.4Q8φ: C4×S3/C12C2 ⊆ Aut C14336C14.8(C4xS3)336,98
C14.9(C4×S3) = C2.D84φ: C4×S3/C12C2 ⊆ Aut C14168C14.9(C4xS3)336,100
C14.10(C4×S3) = S3×C7⋊C8φ: C4×S3/D6C2 ⊆ Aut C141684C14.10(C4xS3)336,24
C14.11(C4×S3) = D6.Dic7φ: C4×S3/D6C2 ⊆ Aut C141684C14.11(C4xS3)336,27
C14.12(C4×S3) = Dic3×Dic7φ: C4×S3/D6C2 ⊆ Aut C14336C14.12(C4xS3)336,41
C14.13(C4×S3) = D6⋊Dic7φ: C4×S3/D6C2 ⊆ Aut C14168C14.13(C4xS3)336,43
C14.14(C4×S3) = C14.Dic6φ: C4×S3/D6C2 ⊆ Aut C14336C14.14(C4xS3)336,47
C14.15(C4×S3) = S3×C56central extension (φ=1)1682C14.15(C4xS3)336,74
C14.16(C4×S3) = C7×C8⋊S3central extension (φ=1)1682C14.16(C4xS3)336,75
C14.17(C4×S3) = Dic3×C28central extension (φ=1)336C14.17(C4xS3)336,81
C14.18(C4×S3) = C7×Dic3⋊C4central extension (φ=1)336C14.18(C4xS3)336,82
C14.19(C4×S3) = C7×D6⋊C4central extension (φ=1)168C14.19(C4xS3)336,84

׿
×
𝔽