Extensions 1→N→G→Q→1 with N=C3 and Q=C32⋊C12

Direct product G=N×Q with N=C3 and Q=C32⋊C12

Semidirect products G=N:Q with N=C3 and Q=C32⋊C12
extensionφ:Q→Aut NdρLabelID
C3⋊(C32⋊C12) = C334C12φ: C32⋊C12/C2×He3C2 ⊆ Aut C3108C3:(C3^2:C12)324,98

Non-split extensions G=N.Q with N=C3 and Q=C32⋊C12
extensionφ:Q→Aut NdρLabelID
C3.1(C32⋊C12) = C32⋊Dic9φ: C32⋊C12/C2×He3C2 ⊆ Aut C3108C3.1(C3^2:C12)324,8
C3.2(C32⋊C12) = C33⋊C12φ: C32⋊C12/C2×He3C2 ⊆ Aut C3366-C3.2(C3^2:C12)324,14
C3.3(C32⋊C12) = He3.Dic3φ: C32⋊C12/C2×He3C2 ⊆ Aut C31086-C3.3(C3^2:C12)324,16
C3.4(C32⋊C12) = He3.2Dic3φ: C32⋊C12/C2×He3C2 ⊆ Aut C31086-C3.4(C3^2:C12)324,18
C3.5(C32⋊C12) = C32⋊C36central extension (φ=1)366C3.5(C3^2:C12)324,7
C3.6(C32⋊C12) = He3⋊C12central stem extension (φ=1)363C3.6(C3^2:C12)324,13
C3.7(C32⋊C12) = He3.C12central stem extension (φ=1)1083C3.7(C3^2:C12)324,15
C3.8(C32⋊C12) = He3.2C12central stem extension (φ=1)1083C3.8(C3^2:C12)324,17