Copied to
clipboard

G = He3.2Dic3order 324 = 22·34

2nd non-split extension by He3 of Dic3 acting via Dic3/C2=S3

metabelian, supersoluble, monomial

Aliases: He3.2Dic3, (C3×C9)⋊3C12, (C3×C18).3C6, C9⋊Dic33C3, He3⋊C32C4, (C2×He3).3S3, C6.4(C32⋊C6), C3.4(C32⋊C12), C2.(He3.2S3), C32.8(C3×Dic3), (C3×C6).15(C3×S3), (C2×He3⋊C3).2C2, SmallGroup(324,18)

Series: Derived Chief Lower central Upper central

C1C3×C9 — He3.2Dic3
C1C3C32C3×C9C3×C18C2×He3⋊C3 — He3.2Dic3
C3×C9 — He3.2Dic3
C1C2

Generators and relations for He3.2Dic3
 G = < a,b,c,d,e | a3=b3=c3=1, d6=b, e2=bd3, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, bd=db, ebe-1=b-1, dcd-1=ab-1c, ce=ec, ede-1=b-1d5 >

3C3
9C3
18C3
27C4
3C6
9C6
18C6
3C9
3C32
6C32
9Dic3
27C12
27Dic3
3C18
3C3×C6
6C3×C6
2He3
3C3⋊Dic3
9Dic9
9C3×Dic3
2C2×He3
3C32⋊C12

Character table of He3.2Dic3

 class 123A3B3C3D3E3F4A4B6A6B6C6D6E6F9A9B9C12A12B12C12D18A18B18C
 size 112699181827272699181866627272727666
ρ111111111111111111111111111    trivial
ρ211111111-1-1111111111-1-1-1-1111    linear of order 2
ρ31111ζ32ζ3ζ32ζ3-1-111ζ32ζ3ζ32ζ3111ζ65ζ6ζ6ζ65111    linear of order 6
ρ41111ζ32ζ3ζ32ζ31111ζ32ζ3ζ32ζ3111ζ3ζ32ζ32ζ3111    linear of order 3
ρ51111ζ3ζ32ζ3ζ321111ζ3ζ32ζ3ζ32111ζ32ζ3ζ3ζ32111    linear of order 3
ρ61111ζ3ζ32ζ3ζ32-1-111ζ3ζ32ζ3ζ32111ζ6ζ65ζ65ζ6111    linear of order 6
ρ71-1111111-ii-1-1-1-1-1-1111-ii-ii-1-1-1    linear of order 4
ρ81-1111111i-i-1-1-1-1-1-1111i-ii-i-1-1-1    linear of order 4
ρ91-111ζ3ζ32ζ3ζ32-ii-1-1ζ65ζ6ζ65ζ6111ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32-1-1-1    linear of order 12
ρ101-111ζ32ζ3ζ32ζ3i-i-1-1ζ6ζ65ζ6ζ65111ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3-1-1-1    linear of order 12
ρ111-111ζ3ζ32ζ3ζ32i-i-1-1ζ65ζ6ζ65ζ6111ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32-1-1-1    linear of order 12
ρ121-111ζ32ζ3ζ32ζ3-ii-1-1ζ6ζ65ζ6ζ65111ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3-1-1-1    linear of order 12
ρ13222222-1-1002222-1-1-1-1-10000-1-1-1    orthogonal lifted from S3
ρ142-22222-1-100-2-2-2-211-1-1-10000111    symplectic lifted from Dic3, Schur index 2
ρ152222-1+-3-1--3ζ65ζ60022-1+-3-1--3ζ65ζ6-1-1-10000-1-1-1    complex lifted from C3×S3
ρ162-222-1--3-1+-3ζ6ζ6500-2-21+-31--3ζ32ζ3-1-1-10000111    complex lifted from C3×Dic3
ρ172222-1--3-1+-3ζ6ζ650022-1--3-1+-3ζ6ζ65-1-1-10000-1-1-1    complex lifted from C3×S3
ρ182-222-1+-3-1--3ζ65ζ600-2-21--31+-3ζ3ζ32-1-1-10000111    complex lifted from C3×Dic3
ρ19666-30000006-300000000000000    orthogonal lifted from C32⋊C6
ρ2066-30000000-300000ζ95+2ζ94929989492998+2ζ97949200009894929ζ95+2ζ9492998+2ζ979492    orthogonal lifted from He3.2S3
ρ2166-30000000-300000989492998+2ζ979492ζ95+2ζ94929000098+2ζ9794929894929ζ95+2ζ94929    orthogonal lifted from He3.2S3
ρ2266-30000000-30000098+2ζ979492ζ95+2ζ9492998949290000ζ95+2ζ9492998+2ζ9794929894929    orthogonal lifted from He3.2S3
ρ236-66-3000000-6300000000000000    symplectic lifted from C32⋊C12, Schur index 2
ρ246-6-30000000300000989492998+2ζ979492ζ95+2ζ949290000ζ989492+2ζ99594929ζ989794+2ζ92    symplectic faithful, Schur index 2
ρ256-6-3000000030000098+2ζ979492ζ95+2ζ9492998949290000ζ989794+2ζ92ζ989492+2ζ99594929    symplectic faithful, Schur index 2
ρ266-6-30000000300000ζ95+2ζ94929989492998+2ζ97949200009594929ζ989794+2ζ92ζ989492+2ζ9    symplectic faithful, Schur index 2

Smallest permutation representation of He3.2Dic3
On 108 points
Generators in S108
(1 29 78)(2 30 79)(3 31 80)(4 32 81)(5 33 82)(6 34 83)(7 35 84)(8 36 85)(9 19 86)(10 20 87)(11 21 88)(12 22 89)(13 23 90)(14 24 73)(15 25 74)(16 26 75)(17 27 76)(18 28 77)(37 93 67)(38 94 68)(39 95 69)(40 96 70)(41 97 71)(42 98 72)(43 99 55)(44 100 56)(45 101 57)(46 102 58)(47 103 59)(48 104 60)(49 105 61)(50 106 62)(51 107 63)(52 108 64)(53 91 65)(54 92 66)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)(19 25 31)(20 26 32)(21 27 33)(22 28 34)(23 29 35)(24 30 36)(37 43 49)(38 44 50)(39 45 51)(40 46 52)(41 47 53)(42 48 54)(55 61 67)(56 62 68)(57 63 69)(58 64 70)(59 65 71)(60 66 72)(73 79 85)(74 80 86)(75 81 87)(76 82 88)(77 83 89)(78 84 90)(91 97 103)(92 98 104)(93 99 105)(94 100 106)(95 101 107)(96 102 108)
(1 9 76)(2 20 34)(3 88 13)(4 12 79)(5 23 19)(6 73 16)(7 15 82)(8 26 22)(10 18 85)(11 29 25)(14 32 28)(17 35 31)(21 84 86)(24 87 89)(27 90 74)(30 75 77)(33 78 80)(36 81 83)(37 71 69)(38 42 102)(39 99 53)(40 56 72)(41 45 105)(43 59 57)(44 48 108)(46 62 60)(47 51 93)(49 65 63)(50 54 96)(52 68 66)(55 97 107)(58 100 92)(61 103 95)(64 106 98)(67 91 101)(70 94 104)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 97 10 106)(2 96 11 105)(3 95 12 104)(4 94 13 103)(5 93 14 102)(6 92 15 101)(7 91 16 100)(8 108 17 99)(9 107 18 98)(19 51 28 42)(20 50 29 41)(21 49 30 40)(22 48 31 39)(23 47 32 38)(24 46 33 37)(25 45 34 54)(26 44 35 53)(27 43 36 52)(55 85 64 76)(56 84 65 75)(57 83 66 74)(58 82 67 73)(59 81 68 90)(60 80 69 89)(61 79 70 88)(62 78 71 87)(63 77 72 86)

G:=sub<Sym(108)| (1,29,78)(2,30,79)(3,31,80)(4,32,81)(5,33,82)(6,34,83)(7,35,84)(8,36,85)(9,19,86)(10,20,87)(11,21,88)(12,22,89)(13,23,90)(14,24,73)(15,25,74)(16,26,75)(17,27,76)(18,28,77)(37,93,67)(38,94,68)(39,95,69)(40,96,70)(41,97,71)(42,98,72)(43,99,55)(44,100,56)(45,101,57)(46,102,58)(47,103,59)(48,104,60)(49,105,61)(50,106,62)(51,107,63)(52,108,64)(53,91,65)(54,92,66), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,79,85)(74,80,86)(75,81,87)(76,82,88)(77,83,89)(78,84,90)(91,97,103)(92,98,104)(93,99,105)(94,100,106)(95,101,107)(96,102,108), (1,9,76)(2,20,34)(3,88,13)(4,12,79)(5,23,19)(6,73,16)(7,15,82)(8,26,22)(10,18,85)(11,29,25)(14,32,28)(17,35,31)(21,84,86)(24,87,89)(27,90,74)(30,75,77)(33,78,80)(36,81,83)(37,71,69)(38,42,102)(39,99,53)(40,56,72)(41,45,105)(43,59,57)(44,48,108)(46,62,60)(47,51,93)(49,65,63)(50,54,96)(52,68,66)(55,97,107)(58,100,92)(61,103,95)(64,106,98)(67,91,101)(70,94,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,97,10,106)(2,96,11,105)(3,95,12,104)(4,94,13,103)(5,93,14,102)(6,92,15,101)(7,91,16,100)(8,108,17,99)(9,107,18,98)(19,51,28,42)(20,50,29,41)(21,49,30,40)(22,48,31,39)(23,47,32,38)(24,46,33,37)(25,45,34,54)(26,44,35,53)(27,43,36,52)(55,85,64,76)(56,84,65,75)(57,83,66,74)(58,82,67,73)(59,81,68,90)(60,80,69,89)(61,79,70,88)(62,78,71,87)(63,77,72,86)>;

G:=Group( (1,29,78)(2,30,79)(3,31,80)(4,32,81)(5,33,82)(6,34,83)(7,35,84)(8,36,85)(9,19,86)(10,20,87)(11,21,88)(12,22,89)(13,23,90)(14,24,73)(15,25,74)(16,26,75)(17,27,76)(18,28,77)(37,93,67)(38,94,68)(39,95,69)(40,96,70)(41,97,71)(42,98,72)(43,99,55)(44,100,56)(45,101,57)(46,102,58)(47,103,59)(48,104,60)(49,105,61)(50,106,62)(51,107,63)(52,108,64)(53,91,65)(54,92,66), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18)(19,25,31)(20,26,32)(21,27,33)(22,28,34)(23,29,35)(24,30,36)(37,43,49)(38,44,50)(39,45,51)(40,46,52)(41,47,53)(42,48,54)(55,61,67)(56,62,68)(57,63,69)(58,64,70)(59,65,71)(60,66,72)(73,79,85)(74,80,86)(75,81,87)(76,82,88)(77,83,89)(78,84,90)(91,97,103)(92,98,104)(93,99,105)(94,100,106)(95,101,107)(96,102,108), (1,9,76)(2,20,34)(3,88,13)(4,12,79)(5,23,19)(6,73,16)(7,15,82)(8,26,22)(10,18,85)(11,29,25)(14,32,28)(17,35,31)(21,84,86)(24,87,89)(27,90,74)(30,75,77)(33,78,80)(36,81,83)(37,71,69)(38,42,102)(39,99,53)(40,56,72)(41,45,105)(43,59,57)(44,48,108)(46,62,60)(47,51,93)(49,65,63)(50,54,96)(52,68,66)(55,97,107)(58,100,92)(61,103,95)(64,106,98)(67,91,101)(70,94,104), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,97,10,106)(2,96,11,105)(3,95,12,104)(4,94,13,103)(5,93,14,102)(6,92,15,101)(7,91,16,100)(8,108,17,99)(9,107,18,98)(19,51,28,42)(20,50,29,41)(21,49,30,40)(22,48,31,39)(23,47,32,38)(24,46,33,37)(25,45,34,54)(26,44,35,53)(27,43,36,52)(55,85,64,76)(56,84,65,75)(57,83,66,74)(58,82,67,73)(59,81,68,90)(60,80,69,89)(61,79,70,88)(62,78,71,87)(63,77,72,86) );

G=PermutationGroup([[(1,29,78),(2,30,79),(3,31,80),(4,32,81),(5,33,82),(6,34,83),(7,35,84),(8,36,85),(9,19,86),(10,20,87),(11,21,88),(12,22,89),(13,23,90),(14,24,73),(15,25,74),(16,26,75),(17,27,76),(18,28,77),(37,93,67),(38,94,68),(39,95,69),(40,96,70),(41,97,71),(42,98,72),(43,99,55),(44,100,56),(45,101,57),(46,102,58),(47,103,59),(48,104,60),(49,105,61),(50,106,62),(51,107,63),(52,108,64),(53,91,65),(54,92,66)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18),(19,25,31),(20,26,32),(21,27,33),(22,28,34),(23,29,35),(24,30,36),(37,43,49),(38,44,50),(39,45,51),(40,46,52),(41,47,53),(42,48,54),(55,61,67),(56,62,68),(57,63,69),(58,64,70),(59,65,71),(60,66,72),(73,79,85),(74,80,86),(75,81,87),(76,82,88),(77,83,89),(78,84,90),(91,97,103),(92,98,104),(93,99,105),(94,100,106),(95,101,107),(96,102,108)], [(1,9,76),(2,20,34),(3,88,13),(4,12,79),(5,23,19),(6,73,16),(7,15,82),(8,26,22),(10,18,85),(11,29,25),(14,32,28),(17,35,31),(21,84,86),(24,87,89),(27,90,74),(30,75,77),(33,78,80),(36,81,83),(37,71,69),(38,42,102),(39,99,53),(40,56,72),(41,45,105),(43,59,57),(44,48,108),(46,62,60),(47,51,93),(49,65,63),(50,54,96),(52,68,66),(55,97,107),(58,100,92),(61,103,95),(64,106,98),(67,91,101),(70,94,104)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,97,10,106),(2,96,11,105),(3,95,12,104),(4,94,13,103),(5,93,14,102),(6,92,15,101),(7,91,16,100),(8,108,17,99),(9,107,18,98),(19,51,28,42),(20,50,29,41),(21,49,30,40),(22,48,31,39),(23,47,32,38),(24,46,33,37),(25,45,34,54),(26,44,35,53),(27,43,36,52),(55,85,64,76),(56,84,65,75),(57,83,66,74),(58,82,67,73),(59,81,68,90),(60,80,69,89),(61,79,70,88),(62,78,71,87),(63,77,72,86)]])

Matrix representation of He3.2Dic3 in GL8(𝔽37)

10000000
01000000
00001000
00000100
00000010
00000001
00100000
00010000
,
10000000
01000000
00010000
0036360000
00000100
0000363600
00000001
0000003636
,
10000000
01000000
00171434203420
0023317141714
002333420233
00342017143420
0017141714233
002332333420
,
110000000
2327000000
003232034323
0014173231417
003233232034
0014171417323
002034323323
0032314171417
,
23000000
2335000000
00162934353222
00132113275
00343532221629
00132751321
00322216293435
00275132113

G:=sub<GL(8,GF(37))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,17,23,23,34,17,23,0,0,14,3,3,20,14,3,0,0,34,17,34,17,17,23,0,0,20,14,20,14,14,3,0,0,34,17,23,34,23,34,0,0,20,14,3,20,3,20],[11,23,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,3,14,3,14,20,3,0,0,23,17,23,17,34,23,0,0,20,3,3,14,3,14,0,0,34,23,23,17,23,17,0,0,3,14,20,3,3,14,0,0,23,17,34,23,23,17],[2,23,0,0,0,0,0,0,3,35,0,0,0,0,0,0,0,0,16,13,34,1,32,27,0,0,29,21,35,3,22,5,0,0,34,1,32,27,16,13,0,0,35,3,22,5,29,21,0,0,32,27,16,13,34,1,0,0,22,5,29,21,35,3] >;

He3.2Dic3 in GAP, Magma, Sage, TeX

{\rm He}_3._2{\rm Dic}_3
% in TeX

G:=Group("He3.2Dic3");
// GroupNames label

G:=SmallGroup(324,18);
// by ID

G=gap.SmallGroup(324,18);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,3171,585,453,2164,2170,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=1,d^6=b,e^2=b*d^3,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d^-1=a*b^-1*c,c*e=e*c,e*d*e^-1=b^-1*d^5>;
// generators/relations

Export

Subgroup lattice of He3.2Dic3 in TeX
Character table of He3.2Dic3 in TeX

׿
×
𝔽