Copied to
clipboard

G = He3.C12order 324 = 22·34

1st non-split extension by He3 of C12 acting via C12/C2=C6

non-abelian, supersoluble, monomial

Aliases: He3.1C12, (C3×C18).3S3, (C3×C9)⋊2Dic3, He33C4.C3, He3.C33C4, (C2×He3).2C6, C6.12(C32⋊C6), C3.7(C32⋊C12), C2.(He3.C6), C32.2(C3×Dic3), (C3×C6).2(C3×S3), (C2×He3.C3).3C2, SmallGroup(324,15)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3.C12
C1C3C32He3C2×He3C2×He3.C3 — He3.C12
He3 — He3.C12
C1C6

Generators and relations for He3.C12
 G = < a,b,c,d | a3=b3=c3=1, d12=b-1, ab=ba, cac-1=ab-1, dad-1=a-1b, bc=cb, bd=db, dcd-1=ac-1 >

3C3
9C3
9C4
3C6
9C6
3C32
3C9
6C9
3Dic3
9Dic3
9C12
3C3×C6
3C18
6C18
23- 1+2
3C3×Dic3
9C36
9C3×Dic3
2C2×3- 1+2
3C9×Dic3

Smallest permutation representation of He3.C12
On 108 points
Generators in S108
(1 52 86)(2 75 65)(3 54 88)(4 77 67)(5 56 90)(6 79 69)(7 58 92)(8 81 71)(9 60 94)(10 83 37)(11 62 96)(12 85 39)(13 64 98)(14 87 41)(15 66 100)(16 89 43)(17 68 102)(18 91 45)(19 70 104)(20 93 47)(21 72 106)(22 95 49)(23 38 108)(24 97 51)(25 40 74)(26 99 53)(27 42 76)(28 101 55)(29 44 78)(30 103 57)(31 46 80)(32 105 59)(33 48 82)(34 107 61)(35 50 84)(36 73 63)
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 61 49)(38 62 50)(39 63 51)(40 64 52)(41 65 53)(42 66 54)(43 67 55)(44 68 56)(45 69 57)(46 70 58)(47 71 59)(48 72 60)(73 97 85)(74 98 86)(75 99 87)(76 100 88)(77 101 89)(78 102 90)(79 103 91)(80 104 92)(81 105 93)(82 106 94)(83 107 95)(84 108 96)
(2 65 87)(3 54 76)(5 90 68)(6 79 57)(8 71 93)(9 60 82)(11 96 38)(12 85 63)(14 41 99)(15 66 88)(17 102 44)(18 91 69)(20 47 105)(21 72 94)(23 108 50)(24 97 39)(26 53 75)(27 42 100)(29 78 56)(30 103 45)(32 59 81)(33 48 106)(35 84 62)(36 73 51)(37 49 61)(40 64 52)(43 55 67)(46 70 58)(74 86 98)(77 101 89)(80 92 104)(83 107 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,52,86)(2,75,65)(3,54,88)(4,77,67)(5,56,90)(6,79,69)(7,58,92)(8,81,71)(9,60,94)(10,83,37)(11,62,96)(12,85,39)(13,64,98)(14,87,41)(15,66,100)(16,89,43)(17,68,102)(18,91,45)(19,70,104)(20,93,47)(21,72,106)(22,95,49)(23,38,108)(24,97,51)(25,40,74)(26,99,53)(27,42,76)(28,101,55)(29,44,78)(30,103,57)(31,46,80)(32,105,59)(33,48,82)(34,107,61)(35,50,84)(36,73,63), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(73,97,85)(74,98,86)(75,99,87)(76,100,88)(77,101,89)(78,102,90)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96), (2,65,87)(3,54,76)(5,90,68)(6,79,57)(8,71,93)(9,60,82)(11,96,38)(12,85,63)(14,41,99)(15,66,88)(17,102,44)(18,91,69)(20,47,105)(21,72,94)(23,108,50)(24,97,39)(26,53,75)(27,42,100)(29,78,56)(30,103,45)(32,59,81)(33,48,106)(35,84,62)(36,73,51)(37,49,61)(40,64,52)(43,55,67)(46,70,58)(74,86,98)(77,101,89)(80,92,104)(83,107,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,52,86)(2,75,65)(3,54,88)(4,77,67)(5,56,90)(6,79,69)(7,58,92)(8,81,71)(9,60,94)(10,83,37)(11,62,96)(12,85,39)(13,64,98)(14,87,41)(15,66,100)(16,89,43)(17,68,102)(18,91,45)(19,70,104)(20,93,47)(21,72,106)(22,95,49)(23,38,108)(24,97,51)(25,40,74)(26,99,53)(27,42,76)(28,101,55)(29,44,78)(30,103,57)(31,46,80)(32,105,59)(33,48,82)(34,107,61)(35,50,84)(36,73,63), (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,61,49)(38,62,50)(39,63,51)(40,64,52)(41,65,53)(42,66,54)(43,67,55)(44,68,56)(45,69,57)(46,70,58)(47,71,59)(48,72,60)(73,97,85)(74,98,86)(75,99,87)(76,100,88)(77,101,89)(78,102,90)(79,103,91)(80,104,92)(81,105,93)(82,106,94)(83,107,95)(84,108,96), (2,65,87)(3,54,76)(5,90,68)(6,79,57)(8,71,93)(9,60,82)(11,96,38)(12,85,63)(14,41,99)(15,66,88)(17,102,44)(18,91,69)(20,47,105)(21,72,94)(23,108,50)(24,97,39)(26,53,75)(27,42,100)(29,78,56)(30,103,45)(32,59,81)(33,48,106)(35,84,62)(36,73,51)(37,49,61)(40,64,52)(43,55,67)(46,70,58)(74,86,98)(77,101,89)(80,92,104)(83,107,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,52,86),(2,75,65),(3,54,88),(4,77,67),(5,56,90),(6,79,69),(7,58,92),(8,81,71),(9,60,94),(10,83,37),(11,62,96),(12,85,39),(13,64,98),(14,87,41),(15,66,100),(16,89,43),(17,68,102),(18,91,45),(19,70,104),(20,93,47),(21,72,106),(22,95,49),(23,38,108),(24,97,51),(25,40,74),(26,99,53),(27,42,76),(28,101,55),(29,44,78),(30,103,57),(31,46,80),(32,105,59),(33,48,82),(34,107,61),(35,50,84),(36,73,63)], [(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,61,49),(38,62,50),(39,63,51),(40,64,52),(41,65,53),(42,66,54),(43,67,55),(44,68,56),(45,69,57),(46,70,58),(47,71,59),(48,72,60),(73,97,85),(74,98,86),(75,99,87),(76,100,88),(77,101,89),(78,102,90),(79,103,91),(80,104,92),(81,105,93),(82,106,94),(83,107,95),(84,108,96)], [(2,65,87),(3,54,76),(5,90,68),(6,79,57),(8,71,93),(9,60,82),(11,96,38),(12,85,63),(14,41,99),(15,66,88),(17,102,44),(18,91,69),(20,47,105),(21,72,94),(23,108,50),(24,97,39),(26,53,75),(27,42,100),(29,78,56),(30,103,45),(32,59,81),(33,48,106),(35,84,62),(36,73,51),(37,49,61),(40,64,52),(43,55,67),(46,70,58),(74,86,98),(77,101,89),(80,92,104),(83,107,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)]])

44 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B6C6D9A···9F9G9H12A12B12C12D18A···18F18G18H36A···36L
order1233334466669···9991212121218···18181836···36
size111161899116183···3181899993···318189···9

44 irreducible representations

dim11111122223366
type+++-+-
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3He3.C6He3.C12C32⋊C6C32⋊C12
kernelHe3.C12C2×He3.C3He33C4He3.C3C2×He3He3C3×C18C3×C9C3×C6C32C2C1C6C3
# reps1122241122121211

Matrix representation of He3.C12 in GL5(𝔽37)

10000
01000
0010028
000027
0001027
,
10000
01000
001000
000100
000010
,
3636000
10000
00100
0027100
001026
,
140000
2323000
0092821
0021280
0092812

G:=sub<GL(5,GF(37))| [1,0,0,0,0,0,1,0,0,0,0,0,10,0,0,0,0,0,0,10,0,0,28,27,27],[1,0,0,0,0,0,1,0,0,0,0,0,10,0,0,0,0,0,10,0,0,0,0,0,10],[36,1,0,0,0,36,0,0,0,0,0,0,1,27,1,0,0,0,10,0,0,0,0,0,26],[14,23,0,0,0,0,23,0,0,0,0,0,9,21,9,0,0,28,28,28,0,0,21,0,12] >;

He3.C12 in GAP, Magma, Sage, TeX

{\rm He}_3.C_{12}
% in TeX

G:=Group("He3.C12");
// GroupNames label

G:=SmallGroup(324,15);
// by ID

G=gap.SmallGroup(324,15);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,655,579,585,8644,652]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=1,d^12=b^-1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

Export

Subgroup lattice of He3.C12 in TeX

׿
×
𝔽