Copied to
clipboard

G = He3.Dic3order 324 = 22·34

1st non-split extension by He3 of Dic3 acting via Dic3/C2=S3

metabelian, supersoluble, monomial

Aliases: He3.1Dic3, (C3×C9)⋊2C12, (C3×C18).2C6, C9⋊Dic32C3, He3.C32C4, (C2×He3).2S3, C6.3(C32⋊C6), C3.3(C32⋊C12), C2.(He3.S3), C32.7(C3×Dic3), (C3×C6).14(C3×S3), (C2×He3.C3).2C2, SmallGroup(324,16)

Series: Derived Chief Lower central Upper central

C1C3×C9 — He3.Dic3
C1C3C32C3×C9C3×C18C2×He3.C3 — He3.Dic3
C3×C9 — He3.Dic3
C1C2

Generators and relations for He3.Dic3
 G = < a,b,c,d,e | a3=b3=c3=1, d6=ebe-1=b-1, e2=b-1d3, ab=ba, cac-1=ab-1, ad=da, eae-1=a-1, bc=cb, bd=db, dcd-1=ab-1c, ce=ec, ede-1=bd5 >

3C3
9C3
27C4
3C6
9C6
3C9
3C32
6C9
9Dic3
27C12
27Dic3
3C18
3C3×C6
6C18
23- 1+2
3C3⋊Dic3
9C3×Dic3
9Dic9
2C2×3- 1+2
3C32⋊C12

Character table of He3.Dic3

 class 123A3B3C3D4A4B6A6B6C6D9A9B9C9D9E12A12B12C12D18A18B18C18D18E
 size 112699272726996661818272727276661818
ρ111111111111111111111111111    trivial
ρ2111111-1-1111111111-1-1-1-111111    linear of order 2
ρ31111ζ3ζ32-1-111ζ3ζ32111ζ3ζ32ζ6ζ65ζ65ζ6111ζ3ζ32    linear of order 6
ρ41111ζ32ζ3-1-111ζ32ζ3111ζ32ζ3ζ65ζ6ζ6ζ65111ζ32ζ3    linear of order 6
ρ51111ζ3ζ321111ζ3ζ32111ζ3ζ32ζ32ζ3ζ3ζ32111ζ3ζ32    linear of order 3
ρ61111ζ32ζ31111ζ32ζ3111ζ32ζ3ζ3ζ32ζ32ζ3111ζ32ζ3    linear of order 3
ρ71-11111i-i-1-1-1-111111i-ii-i-1-1-1-1-1    linear of order 4
ρ81-11111-ii-1-1-1-111111-ii-ii-1-1-1-1-1    linear of order 4
ρ91-111ζ32ζ3-ii-1-1ζ6ζ65111ζ32ζ3ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3-1-1-1ζ6ζ65    linear of order 12
ρ101-111ζ32ζ3i-i-1-1ζ6ζ65111ζ32ζ3ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3-1-1-1ζ6ζ65    linear of order 12
ρ111-111ζ3ζ32i-i-1-1ζ65ζ6111ζ3ζ32ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32-1-1-1ζ65ζ6    linear of order 12
ρ121-111ζ3ζ32-ii-1-1ζ65ζ6111ζ3ζ32ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32-1-1-1ζ65ζ6    linear of order 12
ρ13222222002222-1-1-1-1-10000-1-1-1-1-1    orthogonal lifted from S3
ρ142-2222200-2-2-2-2-1-1-1-1-1000011111    symplectic lifted from Dic3, Schur index 2
ρ152222-1+-3-1--30022-1+-3-1--3-1-1-1ζ65ζ60000-1-1-1ζ65ζ6    complex lifted from C3×S3
ρ162-222-1--3-1+-300-2-21+-31--3-1-1-1ζ6ζ650000111ζ32ζ3    complex lifted from C3×Dic3
ρ172-222-1+-3-1--300-2-21--31+-3-1-1-1ζ65ζ60000111ζ3ζ32    complex lifted from C3×Dic3
ρ182222-1--3-1+-30022-1--3-1+-3-1-1-1ζ6ζ650000-1-1-1ζ6ζ65    complex lifted from C3×S3
ρ1966-300000-30009594929ζ989492+2ζ9ζ989794+2ζ920000009594929ζ989492+2ζ9ζ989794+2ζ9200    orthogonal lifted from He3.S3
ρ20666-300006-30000000000000000    orthogonal lifted from C32⋊C6
ρ2166-300000-3000ζ989794+2ζ929594929ζ989492+2ζ9000000ζ989794+2ζ929594929ζ989492+2ζ900    orthogonal lifted from He3.S3
ρ2266-300000-3000ζ989492+2ζ9ζ989794+2ζ929594929000000ζ989492+2ζ9ζ989794+2ζ92959492900    orthogonal lifted from He3.S3
ρ236-66-30000-630000000000000000    symplectic lifted from C32⋊C12, Schur index 2
ρ246-6-3000003000ζ989492+2ζ9ζ989794+2ζ92959492900000098+2ζ979492ζ95+2ζ94929989492900    symplectic faithful, Schur index 2
ρ256-6-30000030009594929ζ989492+2ζ9ζ989794+2ζ92000000989492998+2ζ979492ζ95+2ζ9492900    symplectic faithful, Schur index 2
ρ266-6-3000003000ζ989794+2ζ929594929ζ989492+2ζ9000000ζ95+2ζ94929989492998+2ζ97949200    symplectic faithful, Schur index 2

Smallest permutation representation of He3.Dic3
On 108 points
Generators in S108
(1 70 33)(2 71 34)(3 72 35)(4 55 36)(5 56 19)(6 57 20)(7 58 21)(8 59 22)(9 60 23)(10 61 24)(11 62 25)(12 63 26)(13 64 27)(14 65 28)(15 66 29)(16 67 30)(17 68 31)(18 69 32)(37 91 79)(38 92 80)(39 93 81)(40 94 82)(41 95 83)(42 96 84)(43 97 85)(44 98 86)(45 99 87)(46 100 88)(47 101 89)(48 102 90)(49 103 73)(50 104 74)(51 105 75)(52 106 76)(53 107 77)(54 108 78)
(1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17 11)(6 18 12)(19 31 25)(20 32 26)(21 33 27)(22 34 28)(23 35 29)(24 36 30)(37 49 43)(38 50 44)(39 51 45)(40 52 46)(41 53 47)(42 54 48)(55 67 61)(56 68 62)(57 69 63)(58 70 64)(59 71 65)(60 72 66)(73 85 79)(74 86 80)(75 87 81)(76 88 82)(77 89 83)(78 90 84)(91 103 97)(92 104 98)(93 105 99)(94 106 100)(95 107 101)(96 108 102)
(2 71 28)(3 35 60)(5 56 31)(6 20 63)(8 59 34)(9 23 66)(11 62 19)(12 26 69)(14 65 22)(15 29 72)(17 68 25)(18 32 57)(21 27 33)(24 30 36)(38 92 74)(39 81 99)(41 95 77)(42 84 102)(44 98 80)(45 87 105)(47 101 83)(48 90 108)(50 104 86)(51 75 93)(53 107 89)(54 78 96)(55 67 61)(58 70 64)(73 79 85)(76 82 88)(91 103 97)(94 106 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 52 10 43)(2 51 11 42)(3 50 12 41)(4 49 13 40)(5 48 14 39)(6 47 15 38)(7 46 16 37)(8 45 17 54)(9 44 18 53)(19 102 28 93)(20 101 29 92)(21 100 30 91)(22 99 31 108)(23 98 32 107)(24 97 33 106)(25 96 34 105)(26 95 35 104)(27 94 36 103)(55 73 64 82)(56 90 65 81)(57 89 66 80)(58 88 67 79)(59 87 68 78)(60 86 69 77)(61 85 70 76)(62 84 71 75)(63 83 72 74)

G:=sub<Sym(108)| (1,70,33)(2,71,34)(3,72,35)(4,55,36)(5,56,19)(6,57,20)(7,58,21)(8,59,22)(9,60,23)(10,61,24)(11,62,25)(12,63,26)(13,64,27)(14,65,28)(15,66,29)(16,67,30)(17,68,31)(18,69,32)(37,91,79)(38,92,80)(39,93,81)(40,94,82)(41,95,83)(42,96,84)(43,97,85)(44,98,86)(45,99,87)(46,100,88)(47,101,89)(48,102,90)(49,103,73)(50,104,74)(51,105,75)(52,106,76)(53,107,77)(54,108,78), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84)(91,103,97)(92,104,98)(93,105,99)(94,106,100)(95,107,101)(96,108,102), (2,71,28)(3,35,60)(5,56,31)(6,20,63)(8,59,34)(9,23,66)(11,62,19)(12,26,69)(14,65,22)(15,29,72)(17,68,25)(18,32,57)(21,27,33)(24,30,36)(38,92,74)(39,81,99)(41,95,77)(42,84,102)(44,98,80)(45,87,105)(47,101,83)(48,90,108)(50,104,86)(51,75,93)(53,107,89)(54,78,96)(55,67,61)(58,70,64)(73,79,85)(76,82,88)(91,103,97)(94,106,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,52,10,43)(2,51,11,42)(3,50,12,41)(4,49,13,40)(5,48,14,39)(6,47,15,38)(7,46,16,37)(8,45,17,54)(9,44,18,53)(19,102,28,93)(20,101,29,92)(21,100,30,91)(22,99,31,108)(23,98,32,107)(24,97,33,106)(25,96,34,105)(26,95,35,104)(27,94,36,103)(55,73,64,82)(56,90,65,81)(57,89,66,80)(58,88,67,79)(59,87,68,78)(60,86,69,77)(61,85,70,76)(62,84,71,75)(63,83,72,74)>;

G:=Group( (1,70,33)(2,71,34)(3,72,35)(4,55,36)(5,56,19)(6,57,20)(7,58,21)(8,59,22)(9,60,23)(10,61,24)(11,62,25)(12,63,26)(13,64,27)(14,65,28)(15,66,29)(16,67,30)(17,68,31)(18,69,32)(37,91,79)(38,92,80)(39,93,81)(40,94,82)(41,95,83)(42,96,84)(43,97,85)(44,98,86)(45,99,87)(46,100,88)(47,101,89)(48,102,90)(49,103,73)(50,104,74)(51,105,75)(52,106,76)(53,107,77)(54,108,78), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,25)(20,32,26)(21,33,27)(22,34,28)(23,35,29)(24,36,30)(37,49,43)(38,50,44)(39,51,45)(40,52,46)(41,53,47)(42,54,48)(55,67,61)(56,68,62)(57,69,63)(58,70,64)(59,71,65)(60,72,66)(73,85,79)(74,86,80)(75,87,81)(76,88,82)(77,89,83)(78,90,84)(91,103,97)(92,104,98)(93,105,99)(94,106,100)(95,107,101)(96,108,102), (2,71,28)(3,35,60)(5,56,31)(6,20,63)(8,59,34)(9,23,66)(11,62,19)(12,26,69)(14,65,22)(15,29,72)(17,68,25)(18,32,57)(21,27,33)(24,30,36)(38,92,74)(39,81,99)(41,95,77)(42,84,102)(44,98,80)(45,87,105)(47,101,83)(48,90,108)(50,104,86)(51,75,93)(53,107,89)(54,78,96)(55,67,61)(58,70,64)(73,79,85)(76,82,88)(91,103,97)(94,106,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,52,10,43)(2,51,11,42)(3,50,12,41)(4,49,13,40)(5,48,14,39)(6,47,15,38)(7,46,16,37)(8,45,17,54)(9,44,18,53)(19,102,28,93)(20,101,29,92)(21,100,30,91)(22,99,31,108)(23,98,32,107)(24,97,33,106)(25,96,34,105)(26,95,35,104)(27,94,36,103)(55,73,64,82)(56,90,65,81)(57,89,66,80)(58,88,67,79)(59,87,68,78)(60,86,69,77)(61,85,70,76)(62,84,71,75)(63,83,72,74) );

G=PermutationGroup([[(1,70,33),(2,71,34),(3,72,35),(4,55,36),(5,56,19),(6,57,20),(7,58,21),(8,59,22),(9,60,23),(10,61,24),(11,62,25),(12,63,26),(13,64,27),(14,65,28),(15,66,29),(16,67,30),(17,68,31),(18,69,32),(37,91,79),(38,92,80),(39,93,81),(40,94,82),(41,95,83),(42,96,84),(43,97,85),(44,98,86),(45,99,87),(46,100,88),(47,101,89),(48,102,90),(49,103,73),(50,104,74),(51,105,75),(52,106,76),(53,107,77),(54,108,78)], [(1,13,7),(2,14,8),(3,15,9),(4,16,10),(5,17,11),(6,18,12),(19,31,25),(20,32,26),(21,33,27),(22,34,28),(23,35,29),(24,36,30),(37,49,43),(38,50,44),(39,51,45),(40,52,46),(41,53,47),(42,54,48),(55,67,61),(56,68,62),(57,69,63),(58,70,64),(59,71,65),(60,72,66),(73,85,79),(74,86,80),(75,87,81),(76,88,82),(77,89,83),(78,90,84),(91,103,97),(92,104,98),(93,105,99),(94,106,100),(95,107,101),(96,108,102)], [(2,71,28),(3,35,60),(5,56,31),(6,20,63),(8,59,34),(9,23,66),(11,62,19),(12,26,69),(14,65,22),(15,29,72),(17,68,25),(18,32,57),(21,27,33),(24,30,36),(38,92,74),(39,81,99),(41,95,77),(42,84,102),(44,98,80),(45,87,105),(47,101,83),(48,90,108),(50,104,86),(51,75,93),(53,107,89),(54,78,96),(55,67,61),(58,70,64),(73,79,85),(76,82,88),(91,103,97),(94,106,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,52,10,43),(2,51,11,42),(3,50,12,41),(4,49,13,40),(5,48,14,39),(6,47,15,38),(7,46,16,37),(8,45,17,54),(9,44,18,53),(19,102,28,93),(20,101,29,92),(21,100,30,91),(22,99,31,108),(23,98,32,107),(24,97,33,106),(25,96,34,105),(26,95,35,104),(27,94,36,103),(55,73,64,82),(56,90,65,81),(57,89,66,80),(58,88,67,79),(59,87,68,78),(60,86,69,77),(61,85,70,76),(62,84,71,75),(63,83,72,74)]])

Matrix representation of He3.Dic3 in GL6(𝔽37)

001000
000100
000010
000001
100000
010000
,
010000
36360000
000100
00363600
000001
00003636
,
100000
010000
00363600
001000
000001
00003636
,
34202333420
171434201714
34203420233
171417143420
23334203420
342017141714
,
0310000
3100000
0000031
0000310
0003100
0031000

G:=sub<GL(6,GF(37))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,36,0,0,0,0,1,36,0,0,0,0,0,0,0,36,0,0,0,0,1,36,0,0,0,0,0,0,0,36,0,0,0,0,1,36],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,1,0,0,0,0,36,0,0,0,0,0,0,0,0,36,0,0,0,0,1,36],[34,17,34,17,23,34,20,14,20,14,3,20,23,34,34,17,34,17,3,20,20,14,20,14,34,17,23,34,34,17,20,14,3,20,20,14],[0,31,0,0,0,0,31,0,0,0,0,0,0,0,0,0,0,31,0,0,0,0,31,0,0,0,0,31,0,0,0,0,31,0,0,0] >;

He3.Dic3 in GAP, Magma, Sage, TeX

{\rm He}_3.{\rm Dic}_3
% in TeX

G:=Group("He3.Dic3");
// GroupNames label

G:=SmallGroup(324,16);
// by ID

G=gap.SmallGroup(324,16);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,5763,585,237,2164,2170,7781]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=1,d^6=e*b*e^-1=b^-1,e^2=b^-1*d^3,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=a*b^-1*c,c*e=e*c,e*d*e^-1=b*d^5>;
// generators/relations

Export

Subgroup lattice of He3.Dic3 in TeX
Character table of He3.Dic3 in TeX

׿
×
𝔽