Copied to
clipboard

G = He3.2C12order 324 = 22·34

2nd non-split extension by He3 of C12 acting via C12/C2=C6

non-abelian, supersoluble, monomial

Aliases: He3.2C12, (C3×C18).4S3, (C3×C9)⋊3Dic3, He33C42C3, He3⋊C31C4, (C2×He3).3C6, C3.8(C32⋊C12), C6.13(C32⋊C6), C2.(He3.2C6), C32.3(C3×Dic3), (C3×C6).3(C3×S3), (C2×He3⋊C3).1C2, SmallGroup(324,17)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3.2C12
C1C3C32He3C2×He3C2×He3⋊C3 — He3.2C12
He3 — He3.2C12
C1C6

Generators and relations for He3.2C12
 G = < a,b,c,d | a3=b3=c3=1, d12=b, ab=ba, cac-1=ab-1, dad-1=a-1b, bc=cb, bd=db, dcd-1=ac-1 >

3C3
9C3
18C3
9C4
3C6
9C6
18C6
3C32
3C9
6C32
3Dic3
9Dic3
9C12
3C3×C6
3C18
6C3×C6
2He3
3C3×Dic3
9C3×Dic3
9C36
2C2×He3
3C9×Dic3

Smallest permutation representation of He3.2C12
On 108 points
Generators in S108
(1 73 39)(2 52 98)(3 75 41)(4 54 100)(5 77 43)(6 56 102)(7 79 45)(8 58 104)(9 81 47)(10 60 106)(11 83 49)(12 62 108)(13 85 51)(14 64 74)(15 87 53)(16 66 76)(17 89 55)(18 68 78)(19 91 57)(20 70 80)(21 93 59)(22 72 82)(23 95 61)(24 38 84)(25 97 63)(26 40 86)(27 99 65)(28 42 88)(29 101 67)(30 44 90)(31 103 69)(32 46 92)(33 105 71)(34 48 94)(35 107 37)(36 50 96)
(1 13 25)(2 14 26)(3 15 27)(4 16 28)(5 17 29)(6 18 30)(7 19 31)(8 20 32)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(37 49 61)(38 50 62)(39 51 63)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)(46 58 70)(47 59 71)(48 60 72)(73 85 97)(74 86 98)(75 87 99)(76 88 100)(77 89 101)(78 90 102)(79 91 103)(80 92 104)(81 93 105)(82 94 106)(83 95 107)(84 96 108)
(1 81 29)(2 90 10)(3 49 45)(4 32 84)(5 13 93)(6 48 52)(7 87 35)(8 96 16)(9 55 51)(11 19 99)(12 54 58)(14 102 22)(15 61 57)(17 25 105)(18 60 64)(20 108 28)(21 67 63)(23 31 75)(24 66 70)(26 78 34)(27 37 69)(30 72 40)(33 43 39)(36 42 46)(38 88 104)(41 107 91)(44 94 74)(47 77 97)(50 100 80)(53 83 103)(56 106 86)(59 89 73)(62 76 92)(65 95 79)(68 82 98)(71 101 85)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)

G:=sub<Sym(108)| (1,73,39)(2,52,98)(3,75,41)(4,54,100)(5,77,43)(6,56,102)(7,79,45)(8,58,104)(9,81,47)(10,60,106)(11,83,49)(12,62,108)(13,85,51)(14,64,74)(15,87,53)(16,66,76)(17,89,55)(18,68,78)(19,91,57)(20,70,80)(21,93,59)(22,72,82)(23,95,61)(24,38,84)(25,97,63)(26,40,86)(27,99,65)(28,42,88)(29,101,67)(30,44,90)(31,103,69)(32,46,92)(33,105,71)(34,48,94)(35,107,37)(36,50,96), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72)(73,85,97)(74,86,98)(75,87,99)(76,88,100)(77,89,101)(78,90,102)(79,91,103)(80,92,104)(81,93,105)(82,94,106)(83,95,107)(84,96,108), (1,81,29)(2,90,10)(3,49,45)(4,32,84)(5,13,93)(6,48,52)(7,87,35)(8,96,16)(9,55,51)(11,19,99)(12,54,58)(14,102,22)(15,61,57)(17,25,105)(18,60,64)(20,108,28)(21,67,63)(23,31,75)(24,66,70)(26,78,34)(27,37,69)(30,72,40)(33,43,39)(36,42,46)(38,88,104)(41,107,91)(44,94,74)(47,77,97)(50,100,80)(53,83,103)(56,106,86)(59,89,73)(62,76,92)(65,95,79)(68,82,98)(71,101,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)>;

G:=Group( (1,73,39)(2,52,98)(3,75,41)(4,54,100)(5,77,43)(6,56,102)(7,79,45)(8,58,104)(9,81,47)(10,60,106)(11,83,49)(12,62,108)(13,85,51)(14,64,74)(15,87,53)(16,66,76)(17,89,55)(18,68,78)(19,91,57)(20,70,80)(21,93,59)(22,72,82)(23,95,61)(24,38,84)(25,97,63)(26,40,86)(27,99,65)(28,42,88)(29,101,67)(30,44,90)(31,103,69)(32,46,92)(33,105,71)(34,48,94)(35,107,37)(36,50,96), (1,13,25)(2,14,26)(3,15,27)(4,16,28)(5,17,29)(6,18,30)(7,19,31)(8,20,32)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72)(73,85,97)(74,86,98)(75,87,99)(76,88,100)(77,89,101)(78,90,102)(79,91,103)(80,92,104)(81,93,105)(82,94,106)(83,95,107)(84,96,108), (1,81,29)(2,90,10)(3,49,45)(4,32,84)(5,13,93)(6,48,52)(7,87,35)(8,96,16)(9,55,51)(11,19,99)(12,54,58)(14,102,22)(15,61,57)(17,25,105)(18,60,64)(20,108,28)(21,67,63)(23,31,75)(24,66,70)(26,78,34)(27,37,69)(30,72,40)(33,43,39)(36,42,46)(38,88,104)(41,107,91)(44,94,74)(47,77,97)(50,100,80)(53,83,103)(56,106,86)(59,89,73)(62,76,92)(65,95,79)(68,82,98)(71,101,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108) );

G=PermutationGroup([[(1,73,39),(2,52,98),(3,75,41),(4,54,100),(5,77,43),(6,56,102),(7,79,45),(8,58,104),(9,81,47),(10,60,106),(11,83,49),(12,62,108),(13,85,51),(14,64,74),(15,87,53),(16,66,76),(17,89,55),(18,68,78),(19,91,57),(20,70,80),(21,93,59),(22,72,82),(23,95,61),(24,38,84),(25,97,63),(26,40,86),(27,99,65),(28,42,88),(29,101,67),(30,44,90),(31,103,69),(32,46,92),(33,105,71),(34,48,94),(35,107,37),(36,50,96)], [(1,13,25),(2,14,26),(3,15,27),(4,16,28),(5,17,29),(6,18,30),(7,19,31),(8,20,32),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(37,49,61),(38,50,62),(39,51,63),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69),(46,58,70),(47,59,71),(48,60,72),(73,85,97),(74,86,98),(75,87,99),(76,88,100),(77,89,101),(78,90,102),(79,91,103),(80,92,104),(81,93,105),(82,94,106),(83,95,107),(84,96,108)], [(1,81,29),(2,90,10),(3,49,45),(4,32,84),(5,13,93),(6,48,52),(7,87,35),(8,96,16),(9,55,51),(11,19,99),(12,54,58),(14,102,22),(15,61,57),(17,25,105),(18,60,64),(20,108,28),(21,67,63),(23,31,75),(24,66,70),(26,78,34),(27,37,69),(30,72,40),(33,43,39),(36,42,46),(38,88,104),(41,107,91),(44,94,74),(47,77,97),(50,100,80),(53,83,103),(56,106,86),(59,89,73),(62,76,92),(65,95,79),(68,82,98),(71,101,85)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)]])

44 conjugacy classes

class 1  2 3A3B3C3D3E3F4A4B6A6B6C6D6E6F9A···9F12A12B12C12D18A···18F36A···36L
order12333333446666669···91212121218···1836···36
size11116181818991161818183···399993···39···9

44 irreducible representations

dim11111122223366
type+++-+-
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3He3.2C6He3.2C12C32⋊C6C32⋊C12
kernelHe3.2C12C2×He3⋊C3He33C4He3⋊C3C2×He3He3C3×C18C3×C9C3×C6C32C2C1C6C3
# reps1122241122121211

Matrix representation of He3.2C12 in GL3(𝔽37) generated by

10016
0027
01027
,
1000
0100
0010
,
34337
3403
4333
,
201613
20256
351116
G:=sub<GL(3,GF(37))| [10,0,0,0,0,10,16,27,27],[10,0,0,0,10,0,0,0,10],[34,34,4,33,0,33,7,3,3],[20,20,35,16,25,11,13,6,16] >;

He3.2C12 in GAP, Magma, Sage, TeX

{\rm He}_3._2C_{12}
% in TeX

G:=Group("He3.2C12");
// GroupNames label

G:=SmallGroup(324,17);
// by ID

G=gap.SmallGroup(324,17);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,-3,-3,36,655,579,585,5404,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=1,d^12=b,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

Export

Subgroup lattice of He3.2C12 in TeX

׿
×
𝔽