# Extensions 1→N→G→Q→1 with N=D44⋊5C2 and Q=C2

Direct product G=N×Q with N=D445C2 and Q=C2
dρLabelID
C2×D445C2176C2xD44:5C2352,176

Semidirect products G=N:Q with N=D445C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D445C21C2 = D887C2φ: C2/C1C2 ⊆ Out D445C21762D44:5C2:1C2352,99
D445C22C2 = C8⋊D22φ: C2/C1C2 ⊆ Out D445C2884+D44:5C2:2C2352,103
D445C23C2 = D446C22φ: C2/C1C2 ⊆ Out D445C2884D44:5C2:3C2352,127
D445C24C2 = D4.8D22φ: C2/C1C2 ⊆ Out D445C21764D44:5C2:4C2352,145
D445C25C2 = D46D22φ: C2/C1C2 ⊆ Out D445C2884D44:5C2:5C2352,179
D445C26C2 = Q8.10D22φ: C2/C1C2 ⊆ Out D445C21764D44:5C2:6C2352,182
D445C27C2 = C4○D4×D11φ: C2/C1C2 ⊆ Out D445C2884D44:5C2:7C2352,183
D445C28C2 = D48D22φ: C2/C1C2 ⊆ Out D445C2884+D44:5C2:8C2352,184
D445C29C2 = D4.10D22φ: C2/C1C2 ⊆ Out D445C21764-D44:5C2:9C2352,185

Non-split extensions G=N.Q with N=D445C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D445C2.1C2 = D441C4φ: C2/C1C2 ⊆ Out D445C2882D44:5C2.1C2352,11
D445C2.2C2 = D444C4φ: C2/C1C2 ⊆ Out D445C2884D44:5C2.2C2352,31
D445C2.3C2 = D44.C4φ: C2/C1C2 ⊆ Out D445C21764D44:5C2.3C2352,102
D445C2.4C2 = C8.D22φ: C2/C1C2 ⊆ Out D445C21764-D44:5C2.4C2352,104
D445C2.5C2 = C44.C23φ: C2/C1C2 ⊆ Out D445C21764D44:5C2.5C2352,137
D445C2.6C2 = D44.2C4φ: trivial image1762D44:5C2.6C2352,96

׿
×
𝔽