Copied to
clipboard

G = D444C4order 352 = 25·11

4th semidirect product of D44 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D444C4, C44.54D4, Dic224C4, C22.3D44, M4(2)⋊4D11, C112C4≀C2, C44.6(C2×C4), C4.3(C4×D11), (C2×C22).1D4, (C2×C4).38D22, (C4×Dic11)⋊1C2, C2.11(D22⋊C4), D445C2.2C2, C4.29(C11⋊D4), (C11×M4(2))⋊8C2, (C2×C44).15C22, C22.10(C22⋊C4), SmallGroup(352,31)

Series: Derived Chief Lower central Upper central

C1C44 — D444C4
C1C11C22C44C2×C44D445C2 — D444C4
C11C22C44 — D444C4
C1C4C2×C4M4(2)

Generators and relations for D444C4
 G = < a,b,c | a44=b2=c4=1, bab=a-1, cac-1=a21, cbc-1=a31b >

2C2
44C2
22C4
22C22
22C4
22C4
2C22
4D11
2C8
11D4
11Q8
22C2×C4
22C2×C4
22D4
2Dic11
2Dic11
2D22
2Dic11
11C42
11C4○D4
2C4×D11
2C11⋊D4
2C2×Dic11
2C88
11C4≀C2

Smallest permutation representation of D444C4
On 88 points
Generators in S88
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 49)(2 48)(3 47)(4 46)(5 45)(6 88)(7 87)(8 86)(9 85)(10 84)(11 83)(12 82)(13 81)(14 80)(15 79)(16 78)(17 77)(18 76)(19 75)(20 74)(21 73)(22 72)(23 71)(24 70)(25 69)(26 68)(27 67)(28 66)(29 65)(30 64)(31 63)(32 62)(33 61)(34 60)(35 59)(36 58)(37 57)(38 56)(39 55)(40 54)(41 53)(42 52)(43 51)(44 50)
(1 23)(2 44)(3 21)(4 42)(5 19)(6 40)(7 17)(8 38)(9 15)(10 36)(11 13)(12 34)(14 32)(16 30)(18 28)(20 26)(22 24)(25 43)(27 41)(29 39)(31 37)(33 35)(45 66 67 88)(46 87 68 65)(47 64 69 86)(48 85 70 63)(49 62 71 84)(50 83 72 61)(51 60 73 82)(52 81 74 59)(53 58 75 80)(54 79 76 57)(55 56 77 78)

G:=sub<Sym(88)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,49)(2,48)(3,47)(4,46)(5,45)(6,88)(7,87)(8,86)(9,85)(10,84)(11,83)(12,82)(13,81)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,73)(22,72)(23,71)(24,70)(25,69)(26,68)(27,67)(28,66)(29,65)(30,64)(31,63)(32,62)(33,61)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50), (1,23)(2,44)(3,21)(4,42)(5,19)(6,40)(7,17)(8,38)(9,15)(10,36)(11,13)(12,34)(14,32)(16,30)(18,28)(20,26)(22,24)(25,43)(27,41)(29,39)(31,37)(33,35)(45,66,67,88)(46,87,68,65)(47,64,69,86)(48,85,70,63)(49,62,71,84)(50,83,72,61)(51,60,73,82)(52,81,74,59)(53,58,75,80)(54,79,76,57)(55,56,77,78)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,49)(2,48)(3,47)(4,46)(5,45)(6,88)(7,87)(8,86)(9,85)(10,84)(11,83)(12,82)(13,81)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(21,73)(22,72)(23,71)(24,70)(25,69)(26,68)(27,67)(28,66)(29,65)(30,64)(31,63)(32,62)(33,61)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54)(41,53)(42,52)(43,51)(44,50), (1,23)(2,44)(3,21)(4,42)(5,19)(6,40)(7,17)(8,38)(9,15)(10,36)(11,13)(12,34)(14,32)(16,30)(18,28)(20,26)(22,24)(25,43)(27,41)(29,39)(31,37)(33,35)(45,66,67,88)(46,87,68,65)(47,64,69,86)(48,85,70,63)(49,62,71,84)(50,83,72,61)(51,60,73,82)(52,81,74,59)(53,58,75,80)(54,79,76,57)(55,56,77,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,49),(2,48),(3,47),(4,46),(5,45),(6,88),(7,87),(8,86),(9,85),(10,84),(11,83),(12,82),(13,81),(14,80),(15,79),(16,78),(17,77),(18,76),(19,75),(20,74),(21,73),(22,72),(23,71),(24,70),(25,69),(26,68),(27,67),(28,66),(29,65),(30,64),(31,63),(32,62),(33,61),(34,60),(35,59),(36,58),(37,57),(38,56),(39,55),(40,54),(41,53),(42,52),(43,51),(44,50)], [(1,23),(2,44),(3,21),(4,42),(5,19),(6,40),(7,17),(8,38),(9,15),(10,36),(11,13),(12,34),(14,32),(16,30),(18,28),(20,26),(22,24),(25,43),(27,41),(29,39),(31,37),(33,35),(45,66,67,88),(46,87,68,65),(47,64,69,86),(48,85,70,63),(49,62,71,84),(50,83,72,61),(51,60,73,82),(52,81,74,59),(53,58,75,80),(54,79,76,57),(55,56,77,78)]])

64 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H8A8B11A···11E22A···22E22F···22J44A···44J44K···44O88A···88T
order1222444444448811···1122···2222···2244···4444···4488···88
size112441122222222244442···22···24···42···24···44···4

64 irreducible representations

dim111111222222224
type+++++++++
imageC1C2C2C2C4C4D4D4D11C4≀C2D22C4×D11C11⋊D4D44D444C4
kernelD444C4C4×Dic11C11×M4(2)D445C2Dic22D44C44C2×C22M4(2)C11C2×C4C4C4C22C1
# reps1111221154510101010

Matrix representation of D444C4 in GL4(𝔽89) generated by

55000
03400
004533
008351
,
05500
34000
004778
004742
,
88000
03400
00171
006872
G:=sub<GL(4,GF(89))| [55,0,0,0,0,34,0,0,0,0,45,83,0,0,33,51],[0,34,0,0,55,0,0,0,0,0,47,47,0,0,78,42],[88,0,0,0,0,34,0,0,0,0,17,68,0,0,1,72] >;

D444C4 in GAP, Magma, Sage, TeX

D_{44}\rtimes_4C_4
% in TeX

G:=Group("D44:4C4");
// GroupNames label

G:=SmallGroup(352,31);
// by ID

G=gap.SmallGroup(352,31);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,121,31,86,579,297,69,11525]);
// Polycyclic

G:=Group<a,b,c|a^44=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^21,c*b*c^-1=a^31*b>;
// generators/relations

Export

Subgroup lattice of D444C4 in TeX

׿
×
𝔽