Copied to
clipboard

G = S3×D31order 372 = 22·3·31

Direct product of S3 and D31

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D31, D93⋊C2, C311D6, C31D62, C93⋊C22, (S3×C31)⋊C2, (C3×D31)⋊C2, SmallGroup(372,8)

Series: Derived Chief Lower central Upper central

C1C93 — S3×D31
C1C31C93C3×D31 — S3×D31
C93 — S3×D31
C1

Generators and relations for S3×D31
 G = < a,b,c,d | a3=b2=c31=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

3C2
31C2
93C2
93C22
31C6
31S3
3C62
3D31
31D6
3D62

Smallest permutation representation of S3×D31
On 93 points
Generators in S93
(1 51 82)(2 52 83)(3 53 84)(4 54 85)(5 55 86)(6 56 87)(7 57 88)(8 58 89)(9 59 90)(10 60 91)(11 61 92)(12 62 93)(13 32 63)(14 33 64)(15 34 65)(16 35 66)(17 36 67)(18 37 68)(19 38 69)(20 39 70)(21 40 71)(22 41 72)(23 42 73)(24 43 74)(25 44 75)(26 45 76)(27 46 77)(28 47 78)(29 48 79)(30 49 80)(31 50 81)
(32 63)(33 64)(34 65)(35 66)(36 67)(37 68)(38 69)(39 70)(40 71)(41 72)(42 73)(43 74)(44 75)(45 76)(46 77)(47 78)(48 79)(49 80)(50 81)(51 82)(52 83)(53 84)(54 85)(55 86)(56 87)(57 88)(58 89)(59 90)(60 91)(61 92)(62 93)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)(63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)(32 38)(33 37)(34 36)(39 62)(40 61)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(63 69)(64 68)(65 67)(70 93)(71 92)(72 91)(73 90)(74 89)(75 88)(76 87)(77 86)(78 85)(79 84)(80 83)(81 82)

G:=sub<Sym(93)| (1,51,82)(2,52,83)(3,53,84)(4,54,85)(5,55,86)(6,56,87)(7,57,88)(8,58,89)(9,59,90)(10,60,91)(11,61,92)(12,62,93)(13,32,63)(14,33,64)(15,34,65)(16,35,66)(17,36,67)(18,37,68)(19,38,69)(20,39,70)(21,40,71)(22,41,72)(23,42,73)(24,43,74)(25,44,75)(26,45,76)(27,46,77)(28,47,78)(29,48,79)(30,49,80)(31,50,81), (32,63)(33,64)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,72)(42,73)(43,74)(44,75)(45,76)(46,77)(47,78)(48,79)(49,80)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,92)(62,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(32,38)(33,37)(34,36)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(63,69)(64,68)(65,67)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82)>;

G:=Group( (1,51,82)(2,52,83)(3,53,84)(4,54,85)(5,55,86)(6,56,87)(7,57,88)(8,58,89)(9,59,90)(10,60,91)(11,61,92)(12,62,93)(13,32,63)(14,33,64)(15,34,65)(16,35,66)(17,36,67)(18,37,68)(19,38,69)(20,39,70)(21,40,71)(22,41,72)(23,42,73)(24,43,74)(25,44,75)(26,45,76)(27,46,77)(28,47,78)(29,48,79)(30,49,80)(31,50,81), (32,63)(33,64)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,72)(42,73)(43,74)(44,75)(45,76)(46,77)(47,78)(48,79)(49,80)(50,81)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,92)(62,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(32,38)(33,37)(34,36)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(63,69)(64,68)(65,67)(70,93)(71,92)(72,91)(73,90)(74,89)(75,88)(76,87)(77,86)(78,85)(79,84)(80,83)(81,82) );

G=PermutationGroup([[(1,51,82),(2,52,83),(3,53,84),(4,54,85),(5,55,86),(6,56,87),(7,57,88),(8,58,89),(9,59,90),(10,60,91),(11,61,92),(12,62,93),(13,32,63),(14,33,64),(15,34,65),(16,35,66),(17,36,67),(18,37,68),(19,38,69),(20,39,70),(21,40,71),(22,41,72),(23,42,73),(24,43,74),(25,44,75),(26,45,76),(27,46,77),(28,47,78),(29,48,79),(30,49,80),(31,50,81)], [(32,63),(33,64),(34,65),(35,66),(36,67),(37,68),(38,69),(39,70),(40,71),(41,72),(42,73),(43,74),(44,75),(45,76),(46,77),(47,78),(48,79),(49,80),(50,81),(51,82),(52,83),(53,84),(54,85),(55,86),(56,87),(57,88),(58,89),(59,90),(60,91),(61,92),(62,93)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62),(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17),(32,38),(33,37),(34,36),(39,62),(40,61),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(63,69),(64,68),(65,67),(70,93),(71,92),(72,91),(73,90),(74,89),(75,88),(76,87),(77,86),(78,85),(79,84),(80,83),(81,82)]])

51 conjugacy classes

class 1 2A2B2C 3  6 31A···31O62A···62O93A···93O
order12223631···3162···6293···93
size1331932622···26···64···4

51 irreducible representations

dim111122224
type+++++++++
imageC1C2C2C2S3D6D31D62S3×D31
kernelS3×D31S3×C31C3×D31D93D31C31S3C3C1
# reps111111151515

Matrix representation of S3×D31 in GL4(𝔽373) generated by

1000
0100
00173
00235371
,
1000
0100
00372300
0001
,
0100
3722700
0010
0001
,
0100
1000
0010
0001
G:=sub<GL(4,GF(373))| [1,0,0,0,0,1,0,0,0,0,1,235,0,0,73,371],[1,0,0,0,0,1,0,0,0,0,372,0,0,0,300,1],[0,372,0,0,1,27,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

S3×D31 in GAP, Magma, Sage, TeX

S_3\times D_{31}
% in TeX

G:=Group("S3xD31");
// GroupNames label

G:=SmallGroup(372,8);
// by ID

G=gap.SmallGroup(372,8);
# by ID

G:=PCGroup([4,-2,-2,-3,-31,54,5763]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^31=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of S3×D31 in TeX

׿
×
𝔽