# Extensions 1→N→G→Q→1 with N=C3×C30 and Q=C4

Direct product G=N×Q with N=C3×C30 and Q=C4
dρLabelID
C6×C60360C6xC60360,115

Semidirect products G=N:Q with N=C3×C30 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3×C30)⋊1C4 = C2×C32⋊F5φ: C4/C1C4 ⊆ Aut C3×C30604+(C3xC30):1C4360,150
(C3×C30)⋊2C4 = C2×C323F5φ: C4/C1C4 ⊆ Aut C3×C3090(C3xC30):2C4360,147
(C3×C30)⋊3C4 = C6×C3⋊F5φ: C4/C1C4 ⊆ Aut C3×C30604(C3xC30):3C4360,146
(C3×C30)⋊4C4 = C3×C6×F5φ: C4/C1C4 ⊆ Aut C3×C3090(C3xC30):4C4360,145
(C3×C30)⋊5C4 = C10×C32⋊C4φ: C4/C1C4 ⊆ Aut C3×C30604(C3xC30):5C4360,148
(C3×C30)⋊6C4 = C2×C32⋊Dic5φ: C4/C1C4 ⊆ Aut C3×C30604(C3xC30):6C4360,149
(C3×C30)⋊7C4 = C2×C3⋊Dic15φ: C4/C2C2 ⊆ Aut C3×C30360(C3xC30):7C4360,113
(C3×C30)⋊8C4 = C6×Dic15φ: C4/C2C2 ⊆ Aut C3×C30120(C3xC30):8C4360,103
(C3×C30)⋊9C4 = C3×C6×Dic5φ: C4/C2C2 ⊆ Aut C3×C30360(C3xC30):9C4360,93
(C3×C30)⋊10C4 = Dic3×C30φ: C4/C2C2 ⊆ Aut C3×C30120(C3xC30):10C4360,98
(C3×C30)⋊11C4 = C10×C3⋊Dic3φ: C4/C2C2 ⊆ Aut C3×C30360(C3xC30):11C4360,108

Non-split extensions G=N.Q with N=C3×C30 and Q=C4
extensionφ:Q→Aut NdρLabelID
(C3×C30).1C4 = (C3×C6).F5φ: C4/C1C4 ⊆ Aut C3×C301204-(C3xC30).1C4360,57
(C3×C30).2C4 = C30.Dic3φ: C4/C1C4 ⊆ Aut C3×C30360(C3xC30).2C4360,54
(C3×C30).3C4 = C3×C15⋊C8φ: C4/C1C4 ⊆ Aut C3×C301204(C3xC30).3C4360,53
(C3×C30).4C4 = C32×C5⋊C8φ: C4/C1C4 ⊆ Aut C3×C30360(C3xC30).4C4360,52
(C3×C30).5C4 = C5×C322C8φ: C4/C1C4 ⊆ Aut C3×C301204(C3xC30).5C4360,55
(C3×C30).6C4 = (C3×C15)⋊9C8φ: C4/C1C4 ⊆ Aut C3×C301204(C3xC30).6C4360,56
(C3×C30).7C4 = C60.S3φ: C4/C2C2 ⊆ Aut C3×C30360(C3xC30).7C4360,37
(C3×C30).8C4 = C3×C153C8φ: C4/C2C2 ⊆ Aut C3×C301202(C3xC30).8C4360,35
(C3×C30).9C4 = C32×C52C8φ: C4/C2C2 ⊆ Aut C3×C30360(C3xC30).9C4360,33
(C3×C30).10C4 = C15×C3⋊C8φ: C4/C2C2 ⊆ Aut C3×C301202(C3xC30).10C4360,34
(C3×C30).11C4 = C5×C324C8φ: C4/C2C2 ⊆ Aut C3×C30360(C3xC30).11C4360,36

׿
×
𝔽