Copied to
clipboard

G = C6×Dic15order 360 = 23·32·5

Direct product of C6 and Dic15

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C6×Dic15, C303C12, C304Dic3, C30.54D6, C6.22D30, C62.1D5, C6⋊(C3×Dic5), (C3×C30)⋊8C4, C53(C6×Dic3), (C6×C30).2C2, (C2×C30).7S3, (C2×C30).4C6, C32(C6×Dic5), (C3×C6)⋊2Dic5, (C2×C6).6D15, C6.11(C6×D5), C2.2(C6×D15), C1510(C2×C12), C22.(C3×D15), C10.11(S3×C6), C30.11(C2×C6), C102(C3×Dic3), (C3×C6).30D10, C326(C2×Dic5), C1511(C2×Dic3), (C3×C30).40C22, (C2×C10).(C3×S3), (C3×C15)⋊32(C2×C4), (C2×C6).3(C3×D5), SmallGroup(360,103)

Series: Derived Chief Lower central Upper central

C1C15 — C6×Dic15
C1C5C15C30C3×C30C3×Dic15 — C6×Dic15
C15 — C6×Dic15
C1C2×C6

Generators and relations for C6×Dic15
 G = < a,b,c | a6=b30=1, c2=b15, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 204 in 74 conjugacy classes, 46 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, C6, C6, C6, C2×C4, C32, C10, C10, Dic3, C12, C2×C6, C2×C6, C15, C15, C3×C6, C3×C6, Dic5, C2×C10, C2×Dic3, C2×C12, C30, C30, C30, C3×Dic3, C62, C2×Dic5, C3×C15, C3×Dic5, Dic15, C2×C30, C2×C30, C6×Dic3, C3×C30, C3×C30, C6×Dic5, C2×Dic15, C3×Dic15, C6×C30, C6×Dic15
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D5, Dic3, C12, D6, C2×C6, C3×S3, Dic5, D10, C2×Dic3, C2×C12, C3×D5, D15, C3×Dic3, S3×C6, C2×Dic5, C3×Dic5, Dic15, C6×D5, D30, C6×Dic3, C3×D15, C6×Dic5, C2×Dic15, C3×Dic15, C6×D15, C6×Dic15

Smallest permutation representation of C6×Dic15
On 120 points
Generators in S120
(1 48 21 38 11 58)(2 49 22 39 12 59)(3 50 23 40 13 60)(4 51 24 41 14 31)(5 52 25 42 15 32)(6 53 26 43 16 33)(7 54 27 44 17 34)(8 55 28 45 18 35)(9 56 29 46 19 36)(10 57 30 47 20 37)(61 101 71 111 81 91)(62 102 72 112 82 92)(63 103 73 113 83 93)(64 104 74 114 84 94)(65 105 75 115 85 95)(66 106 76 116 86 96)(67 107 77 117 87 97)(68 108 78 118 88 98)(69 109 79 119 89 99)(70 110 80 120 90 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 86 16 71)(2 85 17 70)(3 84 18 69)(4 83 19 68)(5 82 20 67)(6 81 21 66)(7 80 22 65)(8 79 23 64)(9 78 24 63)(10 77 25 62)(11 76 26 61)(12 75 27 90)(13 74 28 89)(14 73 29 88)(15 72 30 87)(31 113 46 98)(32 112 47 97)(33 111 48 96)(34 110 49 95)(35 109 50 94)(36 108 51 93)(37 107 52 92)(38 106 53 91)(39 105 54 120)(40 104 55 119)(41 103 56 118)(42 102 57 117)(43 101 58 116)(44 100 59 115)(45 99 60 114)

G:=sub<Sym(120)| (1,48,21,38,11,58)(2,49,22,39,12,59)(3,50,23,40,13,60)(4,51,24,41,14,31)(5,52,25,42,15,32)(6,53,26,43,16,33)(7,54,27,44,17,34)(8,55,28,45,18,35)(9,56,29,46,19,36)(10,57,30,47,20,37)(61,101,71,111,81,91)(62,102,72,112,82,92)(63,103,73,113,83,93)(64,104,74,114,84,94)(65,105,75,115,85,95)(66,106,76,116,86,96)(67,107,77,117,87,97)(68,108,78,118,88,98)(69,109,79,119,89,99)(70,110,80,120,90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,86,16,71)(2,85,17,70)(3,84,18,69)(4,83,19,68)(5,82,20,67)(6,81,21,66)(7,80,22,65)(8,79,23,64)(9,78,24,63)(10,77,25,62)(11,76,26,61)(12,75,27,90)(13,74,28,89)(14,73,29,88)(15,72,30,87)(31,113,46,98)(32,112,47,97)(33,111,48,96)(34,110,49,95)(35,109,50,94)(36,108,51,93)(37,107,52,92)(38,106,53,91)(39,105,54,120)(40,104,55,119)(41,103,56,118)(42,102,57,117)(43,101,58,116)(44,100,59,115)(45,99,60,114)>;

G:=Group( (1,48,21,38,11,58)(2,49,22,39,12,59)(3,50,23,40,13,60)(4,51,24,41,14,31)(5,52,25,42,15,32)(6,53,26,43,16,33)(7,54,27,44,17,34)(8,55,28,45,18,35)(9,56,29,46,19,36)(10,57,30,47,20,37)(61,101,71,111,81,91)(62,102,72,112,82,92)(63,103,73,113,83,93)(64,104,74,114,84,94)(65,105,75,115,85,95)(66,106,76,116,86,96)(67,107,77,117,87,97)(68,108,78,118,88,98)(69,109,79,119,89,99)(70,110,80,120,90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,86,16,71)(2,85,17,70)(3,84,18,69)(4,83,19,68)(5,82,20,67)(6,81,21,66)(7,80,22,65)(8,79,23,64)(9,78,24,63)(10,77,25,62)(11,76,26,61)(12,75,27,90)(13,74,28,89)(14,73,29,88)(15,72,30,87)(31,113,46,98)(32,112,47,97)(33,111,48,96)(34,110,49,95)(35,109,50,94)(36,108,51,93)(37,107,52,92)(38,106,53,91)(39,105,54,120)(40,104,55,119)(41,103,56,118)(42,102,57,117)(43,101,58,116)(44,100,59,115)(45,99,60,114) );

G=PermutationGroup([[(1,48,21,38,11,58),(2,49,22,39,12,59),(3,50,23,40,13,60),(4,51,24,41,14,31),(5,52,25,42,15,32),(6,53,26,43,16,33),(7,54,27,44,17,34),(8,55,28,45,18,35),(9,56,29,46,19,36),(10,57,30,47,20,37),(61,101,71,111,81,91),(62,102,72,112,82,92),(63,103,73,113,83,93),(64,104,74,114,84,94),(65,105,75,115,85,95),(66,106,76,116,86,96),(67,107,77,117,87,97),(68,108,78,118,88,98),(69,109,79,119,89,99),(70,110,80,120,90,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,86,16,71),(2,85,17,70),(3,84,18,69),(4,83,19,68),(5,82,20,67),(6,81,21,66),(7,80,22,65),(8,79,23,64),(9,78,24,63),(10,77,25,62),(11,76,26,61),(12,75,27,90),(13,74,28,89),(14,73,29,88),(15,72,30,87),(31,113,46,98),(32,112,47,97),(33,111,48,96),(34,110,49,95),(35,109,50,94),(36,108,51,93),(37,107,52,92),(38,106,53,91),(39,105,54,120),(40,104,55,119),(41,103,56,118),(42,102,57,117),(43,101,58,116),(44,100,59,115),(45,99,60,114)]])

108 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D5A5B6A···6F6G···6O10A···10F12A···12H15A···15P30A···30AV
order1222333334444556···66···610···1012···1215···1530···30
size11111122215151515221···12···22···215···152···22···2

108 irreducible representations

dim11111111222222222222222222
type+++++-+-++-+
imageC1C2C2C3C4C6C6C12S3D5Dic3D6C3×S3Dic5D10C3×D5D15C3×Dic3S3×C6C3×Dic5Dic15C6×D5D30C3×D15C3×Dic15C6×D15
kernelC6×Dic15C3×Dic15C6×C30C2×Dic15C3×C30Dic15C2×C30C30C2×C30C62C30C30C2×C10C3×C6C3×C6C2×C6C2×C6C10C10C6C6C6C6C22C2C2
# reps121244281221242444288448168

Matrix representation of C6×Dic15 in GL3(𝔽61) generated by

4800
0130
0013
,
100
0450
0019
,
6000
001
0600
G:=sub<GL(3,GF(61))| [48,0,0,0,13,0,0,0,13],[1,0,0,0,45,0,0,0,19],[60,0,0,0,0,60,0,1,0] >;

C6×Dic15 in GAP, Magma, Sage, TeX

C_6\times {\rm Dic}_{15}
% in TeX

G:=Group("C6xDic15");
// GroupNames label

G:=SmallGroup(360,103);
// by ID

G=gap.SmallGroup(360,103);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-5,72,1444,10373]);
// Polycyclic

G:=Group<a,b,c|a^6=b^30=1,c^2=b^15,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽