Copied to
clipboard

G = C3×C15⋊C8order 360 = 23·32·5

Direct product of C3 and C15⋊C8

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C3×C15⋊C8, C151C24, C30.1C12, C30.4Dic3, C6.(C3×F5), (C3×C15)⋊6C8, C152(C3⋊C8), C323(C5⋊C8), C6.4(C3⋊F5), (C3×C6).2F5, (C3×C30).3C4, C10.(C3×Dic3), (C3×Dic5).5C6, (C3×Dic5).9S3, Dic5.2(C3×S3), (C32×Dic5).5C2, C5⋊(C3×C3⋊C8), C3⋊(C3×C5⋊C8), C2.(C3×C3⋊F5), SmallGroup(360,53)

Series: Derived Chief Lower central Upper central

C1C15 — C3×C15⋊C8
C1C5C15C30C3×Dic5C32×Dic5 — C3×C15⋊C8
C15 — C3×C15⋊C8
C1C6

Generators and relations for C3×C15⋊C8
 G = < a,b,c | a3=b15=c8=1, ab=ba, ac=ca, cbc-1=b2 >

2C3
5C4
2C6
2C15
15C8
5C12
5C12
10C12
2C30
5C3⋊C8
15C24
5C3×C12
3C5⋊C8
2C3×Dic5
5C3×C3⋊C8
3C3×C5⋊C8

Smallest permutation representation of C3×C15⋊C8
On 120 points
Generators in S120
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 106 46 76 24 97 38 61)(2 114 50 78 25 105 42 63)(3 107 54 80 26 98 31 65)(4 115 58 82 27 91 35 67)(5 108 47 84 28 99 39 69)(6 116 51 86 29 92 43 71)(7 109 55 88 30 100 32 73)(8 117 59 90 16 93 36 75)(9 110 48 77 17 101 40 62)(10 118 52 79 18 94 44 64)(11 111 56 81 19 102 33 66)(12 119 60 83 20 95 37 68)(13 112 49 85 21 103 41 70)(14 120 53 87 22 96 45 72)(15 113 57 89 23 104 34 74)

G:=sub<Sym(120)| (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,106,46,76,24,97,38,61)(2,114,50,78,25,105,42,63)(3,107,54,80,26,98,31,65)(4,115,58,82,27,91,35,67)(5,108,47,84,28,99,39,69)(6,116,51,86,29,92,43,71)(7,109,55,88,30,100,32,73)(8,117,59,90,16,93,36,75)(9,110,48,77,17,101,40,62)(10,118,52,79,18,94,44,64)(11,111,56,81,19,102,33,66)(12,119,60,83,20,95,37,68)(13,112,49,85,21,103,41,70)(14,120,53,87,22,96,45,72)(15,113,57,89,23,104,34,74)>;

G:=Group( (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,106,46,76,24,97,38,61)(2,114,50,78,25,105,42,63)(3,107,54,80,26,98,31,65)(4,115,58,82,27,91,35,67)(5,108,47,84,28,99,39,69)(6,116,51,86,29,92,43,71)(7,109,55,88,30,100,32,73)(8,117,59,90,16,93,36,75)(9,110,48,77,17,101,40,62)(10,118,52,79,18,94,44,64)(11,111,56,81,19,102,33,66)(12,119,60,83,20,95,37,68)(13,112,49,85,21,103,41,70)(14,120,53,87,22,96,45,72)(15,113,57,89,23,104,34,74) );

G=PermutationGroup([[(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,106,46,76,24,97,38,61),(2,114,50,78,25,105,42,63),(3,107,54,80,26,98,31,65),(4,115,58,82,27,91,35,67),(5,108,47,84,28,99,39,69),(6,116,51,86,29,92,43,71),(7,109,55,88,30,100,32,73),(8,117,59,90,16,93,36,75),(9,110,48,77,17,101,40,62),(10,118,52,79,18,94,44,64),(11,111,56,81,19,102,33,66),(12,119,60,83,20,95,37,68),(13,112,49,85,21,103,41,70),(14,120,53,87,22,96,45,72),(15,113,57,89,23,104,34,74)]])

54 conjugacy classes

class 1  2 3A3B3C3D3E4A4B 5 6A6B6C6D6E8A8B8C8D 10 12A12B12C12D12E···12J15A···15H24A···24H30A···30H
order1233333445666668888101212121212···1215···1524···2430···30
size111122255411222151515154555510···104···415···154···4

54 irreducible representations

dim1111111122222244444444
type+++-+-
imageC1C2C3C4C6C8C12C24S3Dic3C3×S3C3⋊C8C3×Dic3C3×C3⋊C8F5C5⋊C8C3×F5C3⋊F5C3×C5⋊C8C15⋊C8C3×C3⋊F5C3×C15⋊C8
kernelC3×C15⋊C8C32×Dic5C15⋊C8C3×C30C3×Dic5C3×C15C30C15C3×Dic5C30Dic5C15C10C5C3×C6C32C6C6C3C3C2C1
# reps1122244811222411222244

Matrix representation of C3×C15⋊C8 in GL6(𝔽241)

100000
010000
00225000
00022500
00002250
00000225
,
22500000
0150000
0009300
0013210900
000057226
000072226
,
0300000
21100000
000010
000001
0018723400
001415400

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,225,0,0,0,0,0,0,225,0,0,0,0,0,0,225,0,0,0,0,0,0,225],[225,0,0,0,0,0,0,15,0,0,0,0,0,0,0,132,0,0,0,0,93,109,0,0,0,0,0,0,57,72,0,0,0,0,226,226],[0,211,0,0,0,0,30,0,0,0,0,0,0,0,0,0,187,141,0,0,0,0,234,54,0,0,1,0,0,0,0,0,0,1,0,0] >;

C3×C15⋊C8 in GAP, Magma, Sage, TeX

C_3\times C_{15}\rtimes C_8
% in TeX

G:=Group("C3xC15:C8");
// GroupNames label

G:=SmallGroup(360,53);
// by ID

G=gap.SmallGroup(360,53);
# by ID

G:=PCGroup([6,-2,-3,-2,-2,-3,-5,36,50,1444,7781,1745]);
// Polycyclic

G:=Group<a,b,c|a^3=b^15=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

Export

Subgroup lattice of C3×C15⋊C8 in TeX

׿
×
𝔽