extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3xC10) = C5xS3xDic3 | φ: S3xC10/C5xS3 → C2 ⊆ Aut C6 | 120 | 4 | C6.1(S3xC10) | 360,72 |
C6.2(S3xC10) = C5xC6.D6 | φ: S3xC10/C5xS3 → C2 ⊆ Aut C6 | 60 | 4 | C6.2(S3xC10) | 360,73 |
C6.3(S3xC10) = C5xD6:S3 | φ: S3xC10/C5xS3 → C2 ⊆ Aut C6 | 120 | 4 | C6.3(S3xC10) | 360,74 |
C6.4(S3xC10) = C5xC3:D12 | φ: S3xC10/C5xS3 → C2 ⊆ Aut C6 | 60 | 4 | C6.4(S3xC10) | 360,75 |
C6.5(S3xC10) = C5xC32:2Q8 | φ: S3xC10/C5xS3 → C2 ⊆ Aut C6 | 120 | 4 | C6.5(S3xC10) | 360,76 |
C6.6(S3xC10) = C5xDic18 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 360 | 2 | C6.6(S3xC10) | 360,20 |
C6.7(S3xC10) = D9xC20 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 180 | 2 | C6.7(S3xC10) | 360,21 |
C6.8(S3xC10) = C5xD36 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 180 | 2 | C6.8(S3xC10) | 360,22 |
C6.9(S3xC10) = C10xDic9 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 360 | | C6.9(S3xC10) | 360,23 |
C6.10(S3xC10) = C5xC9:D4 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 180 | 2 | C6.10(S3xC10) | 360,24 |
C6.11(S3xC10) = D9xC2xC10 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 180 | | C6.11(S3xC10) | 360,48 |
C6.12(S3xC10) = C5xC32:4Q8 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 360 | | C6.12(S3xC10) | 360,105 |
C6.13(S3xC10) = C3:S3xC20 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 180 | | C6.13(S3xC10) | 360,106 |
C6.14(S3xC10) = C5xC12:S3 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 180 | | C6.14(S3xC10) | 360,107 |
C6.15(S3xC10) = C10xC3:Dic3 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 360 | | C6.15(S3xC10) | 360,108 |
C6.16(S3xC10) = C5xC32:7D4 | φ: S3xC10/C30 → C2 ⊆ Aut C6 | 180 | | C6.16(S3xC10) | 360,109 |
C6.17(S3xC10) = C15xDic6 | central extension (φ=1) | 120 | 2 | C6.17(S3xC10) | 360,95 |
C6.18(S3xC10) = S3xC60 | central extension (φ=1) | 120 | 2 | C6.18(S3xC10) | 360,96 |
C6.19(S3xC10) = C15xD12 | central extension (φ=1) | 120 | 2 | C6.19(S3xC10) | 360,97 |
C6.20(S3xC10) = Dic3xC30 | central extension (φ=1) | 120 | | C6.20(S3xC10) | 360,98 |
C6.21(S3xC10) = C15xC3:D4 | central extension (φ=1) | 60 | 2 | C6.21(S3xC10) | 360,99 |