Extensions 1→N→G→Q→1 with N=C6 and Q=S3×C10

Direct product G=N×Q with N=C6 and Q=S3×C10
dρLabelID
S3×C2×C30120S3xC2xC30360,158

Semidirect products G=N:Q with N=C6 and Q=S3×C10
extensionφ:Q→Aut NdρLabelID
C61(S3×C10) = S32×C10φ: S3×C10/C5×S3C2 ⊆ Aut C6604C6:1(S3xC10)360,153
C62(S3×C10) = C3⋊S3×C2×C10φ: S3×C10/C30C2 ⊆ Aut C6180C6:2(S3xC10)360,160

Non-split extensions G=N.Q with N=C6 and Q=S3×C10
extensionφ:Q→Aut NdρLabelID
C6.1(S3×C10) = C5×S3×Dic3φ: S3×C10/C5×S3C2 ⊆ Aut C61204C6.1(S3xC10)360,72
C6.2(S3×C10) = C5×C6.D6φ: S3×C10/C5×S3C2 ⊆ Aut C6604C6.2(S3xC10)360,73
C6.3(S3×C10) = C5×D6⋊S3φ: S3×C10/C5×S3C2 ⊆ Aut C61204C6.3(S3xC10)360,74
C6.4(S3×C10) = C5×C3⋊D12φ: S3×C10/C5×S3C2 ⊆ Aut C6604C6.4(S3xC10)360,75
C6.5(S3×C10) = C5×C322Q8φ: S3×C10/C5×S3C2 ⊆ Aut C61204C6.5(S3xC10)360,76
C6.6(S3×C10) = C5×Dic18φ: S3×C10/C30C2 ⊆ Aut C63602C6.6(S3xC10)360,20
C6.7(S3×C10) = D9×C20φ: S3×C10/C30C2 ⊆ Aut C61802C6.7(S3xC10)360,21
C6.8(S3×C10) = C5×D36φ: S3×C10/C30C2 ⊆ Aut C61802C6.8(S3xC10)360,22
C6.9(S3×C10) = C10×Dic9φ: S3×C10/C30C2 ⊆ Aut C6360C6.9(S3xC10)360,23
C6.10(S3×C10) = C5×C9⋊D4φ: S3×C10/C30C2 ⊆ Aut C61802C6.10(S3xC10)360,24
C6.11(S3×C10) = D9×C2×C10φ: S3×C10/C30C2 ⊆ Aut C6180C6.11(S3xC10)360,48
C6.12(S3×C10) = C5×C324Q8φ: S3×C10/C30C2 ⊆ Aut C6360C6.12(S3xC10)360,105
C6.13(S3×C10) = C3⋊S3×C20φ: S3×C10/C30C2 ⊆ Aut C6180C6.13(S3xC10)360,106
C6.14(S3×C10) = C5×C12⋊S3φ: S3×C10/C30C2 ⊆ Aut C6180C6.14(S3xC10)360,107
C6.15(S3×C10) = C10×C3⋊Dic3φ: S3×C10/C30C2 ⊆ Aut C6360C6.15(S3xC10)360,108
C6.16(S3×C10) = C5×C327D4φ: S3×C10/C30C2 ⊆ Aut C6180C6.16(S3xC10)360,109
C6.17(S3×C10) = C15×Dic6central extension (φ=1)1202C6.17(S3xC10)360,95
C6.18(S3×C10) = S3×C60central extension (φ=1)1202C6.18(S3xC10)360,96
C6.19(S3×C10) = C15×D12central extension (φ=1)1202C6.19(S3xC10)360,97
C6.20(S3×C10) = Dic3×C30central extension (φ=1)120C6.20(S3xC10)360,98
C6.21(S3×C10) = C15×C3⋊D4central extension (φ=1)602C6.21(S3xC10)360,99

׿
×
𝔽