Extensions 1→N→G→Q→1 with N=C3xDic15 and Q=C2

Direct product G=NxQ with N=C3xDic15 and Q=C2
dρLabelID
C6xDic15120C6xDic15360,103

Semidirect products G=N:Q with N=C3xDic15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic15):1C2 = C3xC15:7D4φ: C2/C1C2 ⊆ Out C3xDic15602(C3xDic15):1C2360,104
(C3xDic15):2C2 = C3xD5xDic3φ: C2/C1C2 ⊆ Out C3xDic15604(C3xDic15):2C2360,58
(C3xDic15):3C2 = C3xS3xDic5φ: C2/C1C2 ⊆ Out C3xDic151204(C3xDic15):3C2360,59
(C3xDic15):4C2 = C3xC15:D4φ: C2/C1C2 ⊆ Out C3xDic15604(C3xDic15):4C2360,61
(C3xDic15):5C2 = S3xDic15φ: C2/C1C2 ⊆ Out C3xDic151204-(C3xDic15):5C2360,78
(C3xDic15):6C2 = C6.D30φ: C2/C1C2 ⊆ Out C3xDic15604+(C3xDic15):6C2360,79
(C3xDic15):7C2 = D6:2D15φ: C2/C1C2 ⊆ Out C3xDic15604+(C3xDic15):7C2360,82
(C3xDic15):8C2 = D30.S3φ: C2/C1C2 ⊆ Out C3xDic151204(C3xDic15):8C2360,84
(C3xDic15):9C2 = Dic15:S3φ: C2/C1C2 ⊆ Out C3xDic15604(C3xDic15):9C2360,85
(C3xDic15):10C2 = D30:S3φ: C2/C1C2 ⊆ Out C3xDic15604(C3xDic15):10C2360,86
(C3xDic15):11C2 = C12xD15φ: trivial image1202(C3xDic15):11C2360,101

Non-split extensions G=N.Q with N=C3xDic15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xDic15).1C2 = C3xDic30φ: C2/C1C2 ⊆ Out C3xDic151202(C3xDic15).1C2360,100
(C3xDic15).2C2 = C3xC15:Q8φ: C2/C1C2 ⊆ Out C3xDic151204(C3xDic15).2C2360,64
(C3xDic15).3C2 = C3:Dic30φ: C2/C1C2 ⊆ Out C3xDic151204-(C3xDic15).3C2360,83
(C3xDic15).4C2 = C32:3Dic10φ: C2/C1C2 ⊆ Out C3xDic151204(C3xDic15).4C2360,88

׿
x
:
Z
F
o
wr
Q
<