direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C3×Dic15, C15⋊3C12, C30.1C6, C30.4S3, C6.4D15, C15⋊4Dic3, C32⋊2Dic5, C6.(C3×D5), (C3×C15)⋊8C4, C10.(C3×S3), C3⋊(C3×Dic5), C2.(C3×D15), (C3×C6).1D5, C5⋊2(C3×Dic3), (C3×C30).2C2, SmallGroup(180,15)
Series: Derived ►Chief ►Lower central ►Upper central
C15 — C3×Dic15 |
Generators and relations for C3×Dic15
G = < a,b,c | a3=b30=1, c2=b15, ab=ba, ac=ca, cbc-1=b-1 >
(1 21 11)(2 22 12)(3 23 13)(4 24 14)(5 25 15)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 41 51)(32 42 52)(33 43 53)(34 44 54)(35 45 55)(36 46 56)(37 47 57)(38 48 58)(39 49 59)(40 50 60)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 36 16 51)(2 35 17 50)(3 34 18 49)(4 33 19 48)(5 32 20 47)(6 31 21 46)(7 60 22 45)(8 59 23 44)(9 58 24 43)(10 57 25 42)(11 56 26 41)(12 55 27 40)(13 54 28 39)(14 53 29 38)(15 52 30 37)
G:=sub<Sym(60)| (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,36,16,51)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,31,21,46)(7,60,22,45)(8,59,23,44)(9,58,24,43)(10,57,25,42)(11,56,26,41)(12,55,27,40)(13,54,28,39)(14,53,29,38)(15,52,30,37)>;
G:=Group( (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,41,51)(32,42,52)(33,43,53)(34,44,54)(35,45,55)(36,46,56)(37,47,57)(38,48,58)(39,49,59)(40,50,60), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,36,16,51)(2,35,17,50)(3,34,18,49)(4,33,19,48)(5,32,20,47)(6,31,21,46)(7,60,22,45)(8,59,23,44)(9,58,24,43)(10,57,25,42)(11,56,26,41)(12,55,27,40)(13,54,28,39)(14,53,29,38)(15,52,30,37) );
G=PermutationGroup([[(1,21,11),(2,22,12),(3,23,13),(4,24,14),(5,25,15),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,41,51),(32,42,52),(33,43,53),(34,44,54),(35,45,55),(36,46,56),(37,47,57),(38,48,58),(39,49,59),(40,50,60)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,36,16,51),(2,35,17,50),(3,34,18,49),(4,33,19,48),(5,32,20,47),(6,31,21,46),(7,60,22,45),(8,59,23,44),(9,58,24,43),(10,57,25,42),(11,56,26,41),(12,55,27,40),(13,54,28,39),(14,53,29,38),(15,52,30,37)]])
C3×Dic15 is a maximal subgroup of
C3×D5×Dic3 C3×S3×Dic5 C6.D30 D6⋊2D15 C3⋊Dic30 D30.S3 Dic15⋊S3 D30⋊S3 C32⋊3Dic10 C12×D15
54 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 10A | 10B | 12A | 12B | 12C | 12D | 15A | ··· | 15P | 30A | ··· | 30P |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 12 | 12 | 12 | 12 | 15 | ··· | 15 | 30 | ··· | 30 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 15 | 15 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 15 | 15 | 15 | 15 | 2 | ··· | 2 | 2 | ··· | 2 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | - | + | - | ||||||||||
image | C1 | C2 | C3 | C4 | C6 | C12 | S3 | D5 | Dic3 | C3×S3 | Dic5 | C3×D5 | D15 | C3×Dic3 | C3×Dic5 | Dic15 | C3×D15 | C3×Dic15 |
kernel | C3×Dic15 | C3×C30 | Dic15 | C3×C15 | C30 | C15 | C30 | C3×C6 | C15 | C10 | C32 | C6 | C6 | C5 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 8 | 8 |
Matrix representation of C3×Dic15 ►in GL2(𝔽31) generated by
5 | 0 |
0 | 5 |
13 | 0 |
0 | 12 |
0 | 30 |
1 | 0 |
G:=sub<GL(2,GF(31))| [5,0,0,5],[13,0,0,12],[0,1,30,0] >;
C3×Dic15 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_{15}
% in TeX
G:=Group("C3xDic15");
// GroupNames label
G:=SmallGroup(180,15);
// by ID
G=gap.SmallGroup(180,15);
# by ID
G:=PCGroup([5,-2,-3,-2,-3,-5,30,483,3604]);
// Polycyclic
G:=Group<a,b,c|a^3=b^30=1,c^2=b^15,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export