Extensions 1→N→G→Q→1 with N=C15 and Q=C3⋊C8

Direct product G=N×Q with N=C15 and Q=C3⋊C8
dρLabelID
C15×C3⋊C81202C15xC3:C8360,34

Semidirect products G=N:Q with N=C15 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C151(C3⋊C8) = C30.Dic3φ: C3⋊C8/C6C4 ⊆ Aut C15360C15:1(C3:C8)360,54
C152(C3⋊C8) = C3×C15⋊C8φ: C3⋊C8/C6C4 ⊆ Aut C151204C15:2(C3:C8)360,53
C153(C3⋊C8) = C60.S3φ: C3⋊C8/C12C2 ⊆ Aut C15360C15:3(C3:C8)360,37
C154(C3⋊C8) = C3×C153C8φ: C3⋊C8/C12C2 ⊆ Aut C151202C15:4(C3:C8)360,35
C155(C3⋊C8) = C5×C324C8φ: C3⋊C8/C12C2 ⊆ Aut C15360C15:5(C3:C8)360,36

Non-split extensions G=N.Q with N=C15 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C15.(C3⋊C8) = C45⋊C8φ: C3⋊C8/C6C4 ⊆ Aut C153604C15.(C3:C8)360,6
C15.2(C3⋊C8) = C453C8φ: C3⋊C8/C12C2 ⊆ Aut C153602C15.2(C3:C8)360,3
C15.3(C3⋊C8) = C5×C9⋊C8φ: C3⋊C8/C12C2 ⊆ Aut C153602C15.3(C3:C8)360,1

׿
×
𝔽