Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C5⋊D4

Direct product G=N×Q with N=C3 and Q=C3×C5⋊D4
dρLabelID
C32×C5⋊D4180C3^2xC5:D4360,94

Semidirect products G=N:Q with N=C3 and Q=C3×C5⋊D4
extensionφ:Q→Aut NdρLabelID
C31(C3×C5⋊D4) = C3×C5⋊D12φ: C3×C5⋊D4/C3×Dic5C2 ⊆ Aut C31204C3:1(C3xC5:D4)360,63
C32(C3×C5⋊D4) = C3×C15⋊D4φ: C3×C5⋊D4/C6×D5C2 ⊆ Aut C3604C3:2(C3xC5:D4)360,61
C33(C3×C5⋊D4) = C3×C157D4φ: C3×C5⋊D4/C2×C30C2 ⊆ Aut C3602C3:3(C3xC5:D4)360,104

Non-split extensions G=N.Q with N=C3 and Q=C3×C5⋊D4
extensionφ:Q→Aut NdρLabelID
C3.(C3×C5⋊D4) = C9×C5⋊D4central extension (φ=1)1802C3.(C3xC5:D4)360,19

׿
×
𝔽