# Extensions 1→N→G→Q→1 with N=C3×Dic5 and Q=C6

Direct product G=N×Q with N=C3×Dic5 and Q=C6
dρLabelID
C3×C6×Dic5360C3xC6xDic5360,93

Semidirect products G=N:Q with N=C3×Dic5 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×Dic5)⋊1C6 = C3×S3×Dic5φ: C6/C3C2 ⊆ Out C3×Dic51204(C3xDic5):1C6360,59
(C3×Dic5)⋊2C6 = C3×D30.C2φ: C6/C3C2 ⊆ Out C3×Dic51204(C3xDic5):2C6360,60
(C3×Dic5)⋊3C6 = C3×C5⋊D12φ: C6/C3C2 ⊆ Out C3×Dic51204(C3xDic5):3C6360,63
(C3×Dic5)⋊4C6 = C32×C5⋊D4φ: C6/C3C2 ⊆ Out C3×Dic5180(C3xDic5):4C6360,94
(C3×Dic5)⋊5C6 = D5×C3×C12φ: trivial image180(C3xDic5):5C6360,91

Non-split extensions G=N.Q with N=C3×Dic5 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×Dic5).1C6 = C3×C15⋊Q8φ: C6/C3C2 ⊆ Out C3×Dic51204(C3xDic5).1C6360,64
(C3×Dic5).2C6 = C9×Dic10φ: C6/C3C2 ⊆ Out C3×Dic53602(C3xDic5).2C6360,15
(C3×Dic5).3C6 = C9×C5⋊D4φ: C6/C3C2 ⊆ Out C3×Dic51802(C3xDic5).3C6360,19
(C3×Dic5).4C6 = C32×Dic10φ: C6/C3C2 ⊆ Out C3×Dic5360(C3xDic5).4C6360,90
(C3×Dic5).5C6 = C3×C15⋊C8φ: C6/C3C2 ⊆ Out C3×Dic51204(C3xDic5).5C6360,53
(C3×Dic5).6C6 = C9×C5⋊C8φ: C6/C3C2 ⊆ Out C3×Dic53604(C3xDic5).6C6360,5
(C3×Dic5).7C6 = C32×C5⋊C8φ: C6/C3C2 ⊆ Out C3×Dic5360(C3xDic5).7C6360,52
(C3×Dic5).8C6 = D5×C36φ: trivial image1802(C3xDic5).8C6360,16
(C3×Dic5).9C6 = C18×Dic5φ: trivial image360(C3xDic5).9C6360,18

׿
×
𝔽