# Extensions 1→N→G→Q→1 with N=C2×C6 and Q=D15

Direct product G=N×Q with N=C2×C6 and Q=D15
dρLabelID
C2×C6×D15120C2xC6xD15360,159

Semidirect products G=N:Q with N=C2×C6 and Q=D15
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1D15 = C3×C5⋊S4φ: D15/C5S3 ⊆ Aut C2×C6606(C2xC6):1D15360,139
(C2×C6)⋊2D15 = A4⋊D15φ: D15/C5S3 ⊆ Aut C2×C6606+(C2xC6):2D15360,141
(C2×C6)⋊3D15 = C3×C157D4φ: D15/C15C2 ⊆ Aut C2×C6602(C2xC6):3D15360,104
(C2×C6)⋊4D15 = C62⋊D5φ: D15/C15C2 ⊆ Aut C2×C6180(C2xC6):4D15360,114
(C2×C6)⋊5D15 = C22×C3⋊D15φ: D15/C15C2 ⊆ Aut C2×C6180(C2xC6):5D15360,161

Non-split extensions G=N.Q with N=C2×C6 and Q=D15
extensionφ:Q→Aut NdρLabelID
(C2×C6).D15 = C22⋊D45φ: D15/C5S3 ⊆ Aut C2×C6906+(C2xC6).D15360,41
(C2×C6).2D15 = C2×Dic45φ: D15/C15C2 ⊆ Aut C2×C6360(C2xC6).2D15360,28
(C2×C6).3D15 = C457D4φ: D15/C15C2 ⊆ Aut C2×C61802(C2xC6).3D15360,29
(C2×C6).4D15 = C22×D45φ: D15/C15C2 ⊆ Aut C2×C6180(C2xC6).4D15360,49
(C2×C6).5D15 = C2×C3⋊Dic15φ: D15/C15C2 ⊆ Aut C2×C6360(C2xC6).5D15360,113
(C2×C6).6D15 = C6×Dic15central extension (φ=1)120(C2xC6).6D15360,103

׿
×
𝔽