Copied to
clipboard

G = A4⋊D15order 360 = 23·32·5

The semidirect product of A4 and D15 acting via D15/C15=C2

non-abelian, soluble, monomial

Aliases: A4⋊D15, C151S4, C3⋊(C5⋊S4), C5⋊(C3⋊S4), (C5×A4)⋊1S3, (C2×C30)⋊2S3, (C3×A4)⋊2D5, (C2×C6)⋊2D15, (A4×C15)⋊2C2, C22⋊(C3⋊D15), (C2×C10)⋊2(C3⋊S3), SmallGroup(360,141)

Series: Derived Chief Lower central Upper central

C1C22A4×C15 — A4⋊D15
C1C22C2×C10C2×C30A4×C15 — A4⋊D15
A4×C15 — A4⋊D15
C1

Generators and relations for A4⋊D15
 G = < a,b,c,d,e | a2=b2=c3=d15=e2=1, cac-1=ebe=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 720 in 60 conjugacy classes, 17 normal (11 characteristic)
C1, C2, C3, C3, C4, C22, C22, C5, S3, C6, D4, C32, D5, C10, Dic3, A4, D6, C2×C6, C15, C15, C3⋊S3, Dic5, D10, C2×C10, C3⋊D4, S4, D15, C30, C3×A4, C5⋊D4, C3×C15, Dic15, C5×A4, D30, C2×C30, C3⋊S4, C3⋊D15, C157D4, C5⋊S4, A4×C15, A4⋊D15
Quotients: C1, C2, S3, D5, C3⋊S3, S4, D15, C3⋊S4, C3⋊D15, C5⋊S4, A4⋊D15

Smallest permutation representation of A4⋊D15
On 60 points
Generators in S60
(1 27)(2 28)(3 29)(4 30)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(31 57)(32 58)(33 59)(34 60)(35 46)(36 47)(37 48)(38 49)(39 50)(40 51)(41 52)(42 53)(43 54)(44 55)(45 56)
(1 44)(2 45)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 59)(17 60)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)
(16 33 59)(17 34 60)(18 35 46)(19 36 47)(20 37 48)(21 38 49)(22 39 50)(23 40 51)(24 41 52)(25 42 53)(26 43 54)(27 44 55)(28 45 56)(29 31 57)(30 32 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 22)(17 21)(18 20)(23 30)(24 29)(25 28)(26 27)(31 52)(32 51)(33 50)(34 49)(35 48)(36 47)(37 46)(38 60)(39 59)(40 58)(41 57)(42 56)(43 55)(44 54)(45 53)

G:=sub<Sym(60)| (1,27)(2,28)(3,29)(4,30)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(31,57)(32,58)(33,59)(34,60)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55)(45,56), (1,44)(2,45)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,59)(17,60)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58), (16,33,59)(17,34,60)(18,35,46)(19,36,47)(20,37,48)(21,38,49)(22,39,50)(23,40,51)(24,41,52)(25,42,53)(26,43,54)(27,44,55)(28,45,56)(29,31,57)(30,32,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,22)(17,21)(18,20)(23,30)(24,29)(25,28)(26,27)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47)(37,46)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53)>;

G:=Group( (1,27)(2,28)(3,29)(4,30)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(31,57)(32,58)(33,59)(34,60)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55)(45,56), (1,44)(2,45)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,59)(17,60)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58), (16,33,59)(17,34,60)(18,35,46)(19,36,47)(20,37,48)(21,38,49)(22,39,50)(23,40,51)(24,41,52)(25,42,53)(26,43,54)(27,44,55)(28,45,56)(29,31,57)(30,32,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,22)(17,21)(18,20)(23,30)(24,29)(25,28)(26,27)(31,52)(32,51)(33,50)(34,49)(35,48)(36,47)(37,46)(38,60)(39,59)(40,58)(41,57)(42,56)(43,55)(44,54)(45,53) );

G=PermutationGroup([[(1,27),(2,28),(3,29),(4,30),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(31,57),(32,58),(33,59),(34,60),(35,46),(36,47),(37,48),(38,49),(39,50),(40,51),(41,52),(42,53),(43,54),(44,55),(45,56)], [(1,44),(2,45),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,59),(17,60),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58)], [(16,33,59),(17,34,60),(18,35,46),(19,36,47),(20,37,48),(21,38,49),(22,39,50),(23,40,51),(24,41,52),(25,42,53),(26,43,54),(27,44,55),(28,45,56),(29,31,57),(30,32,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,22),(17,21),(18,20),(23,30),(24,29),(25,28),(26,27),(31,52),(32,51),(33,50),(34,49),(35,48),(36,47),(37,46),(38,60),(39,59),(40,58),(41,57),(42,56),(43,55),(44,54),(45,53)]])

33 conjugacy classes

class 1 2A2B3A3B3C3D 4 5A5B 6 10A10B15A15B15C15D15E···15P30A30B30C30D
order1223333455610101515151515···1530303030
size13902888902266622228···86666

33 irreducible representations

dim11222223666
type+++++++++++
imageC1C2S3S3D5D15D15S4C3⋊S4C5⋊S4A4⋊D15
kernelA4⋊D15A4×C15C5×A4C2×C30C3×A4A4C2×C6C15C5C3C1
# reps113121242124

Matrix representation of A4⋊D15 in GL5(𝔽61)

10000
01000
0006060
006001
000060
,
10000
01000
006000
001060
0060600
,
060000
160000
0060600
00100
006001
,
3012000
4942000
00100
00010
00001
,
3451000
2427000
00010
00100
000060

G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,60,0,0,0,0,60,1,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,1,60,0,0,0,0,60,0,0,0,60,0],[0,1,0,0,0,60,60,0,0,0,0,0,60,1,60,0,0,60,0,0,0,0,0,0,1],[30,49,0,0,0,12,42,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[34,24,0,0,0,51,27,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,60] >;

A4⋊D15 in GAP, Magma, Sage, TeX

A_4\rtimes D_{15}
% in TeX

G:=Group("A4:D15");
// GroupNames label

G:=SmallGroup(360,141);
// by ID

G=gap.SmallGroup(360,141);
# by ID

G:=PCGroup([6,-2,-3,-3,-5,-2,2,49,218,1731,5404,4060,3245,1631]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^15=e^2=1,c*a*c^-1=e*b*e=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽