Copied to
clipboard

G = C3×C5⋊S4order 360 = 23·32·5

Direct product of C3 and C5⋊S4

direct product, non-abelian, soluble, monomial

Aliases: C3×C5⋊S4, C152S4, C5⋊(C3×S4), A4⋊(C3×D5), (C5×A4)⋊1C6, (C2×C30)⋊3S3, (C3×A4)⋊1D5, (C2×C6)⋊1D15, C22⋊(C3×D15), (A4×C15)⋊4C2, (C2×C10)⋊2(C3×S3), SmallGroup(360,139)

Series: Derived Chief Lower central Upper central

C1C22C5×A4 — C3×C5⋊S4
C1C22C2×C10C5×A4A4×C15 — C3×C5⋊S4
C5×A4 — C3×C5⋊S4
C1C3

Generators and relations for C3×C5⋊S4
 G = < a,b,c,d,e,f | a3=b5=c2=d2=e3=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >

3C2
30C2
4C3
8C3
15C4
15C22
3C6
20S3
30C6
4C32
3C10
6D5
4C15
8C15
15D4
2A4
15C2×C6
15C12
20C3×S3
3D10
3Dic5
3C30
4D15
6C3×D5
4C3×C15
5S4
15C3×D4
3C5⋊D4
2C5×A4
3C3×Dic5
3C6×D5
4C3×D15
5C3×S4
3C3×C5⋊D4

Smallest permutation representation of C3×C5⋊S4
On 60 points
Generators in S60
(1 59 39)(2 60 40)(3 56 36)(4 57 37)(5 58 38)(6 54 34)(7 55 35)(8 51 31)(9 52 32)(10 53 33)(11 42 22)(12 43 23)(13 44 24)(14 45 25)(15 41 21)(16 47 27)(17 48 28)(18 49 29)(19 50 30)(20 46 26)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 14)(7 15)(8 11)(9 12)(10 13)(16 60)(17 56)(18 57)(19 58)(20 59)(21 35)(22 31)(23 32)(24 33)(25 34)(36 48)(37 49)(38 50)(39 46)(40 47)(41 55)(42 51)(43 52)(44 53)(45 54)
(1 25)(2 21)(3 22)(4 23)(5 24)(6 20)(7 16)(8 17)(9 18)(10 19)(11 56)(12 57)(13 58)(14 59)(15 60)(26 34)(27 35)(28 31)(29 32)(30 33)(36 42)(37 43)(38 44)(39 45)(40 41)(46 54)(47 55)(48 51)(49 52)(50 53)
(6 20 14)(7 16 15)(8 17 11)(9 18 12)(10 19 13)(21 35 27)(22 31 28)(23 32 29)(24 33 30)(25 34 26)(41 55 47)(42 51 48)(43 52 49)(44 53 50)(45 54 46)
(2 5)(3 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 12)(13 15)(21 24)(22 23)(26 34)(27 33)(28 32)(29 31)(30 35)(36 37)(38 40)(41 44)(42 43)(46 54)(47 53)(48 52)(49 51)(50 55)(56 57)(58 60)

G:=sub<Sym(60)| (1,59,39)(2,60,40)(3,56,36)(4,57,37)(5,58,38)(6,54,34)(7,55,35)(8,51,31)(9,52,32)(10,53,33)(11,42,22)(12,43,23)(13,44,24)(14,45,25)(15,41,21)(16,47,27)(17,48,28)(18,49,29)(19,50,30)(20,46,26), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,26)(2,27)(3,28)(4,29)(5,30)(6,14)(7,15)(8,11)(9,12)(10,13)(16,60)(17,56)(18,57)(19,58)(20,59)(21,35)(22,31)(23,32)(24,33)(25,34)(36,48)(37,49)(38,50)(39,46)(40,47)(41,55)(42,51)(43,52)(44,53)(45,54), (1,25)(2,21)(3,22)(4,23)(5,24)(6,20)(7,16)(8,17)(9,18)(10,19)(11,56)(12,57)(13,58)(14,59)(15,60)(26,34)(27,35)(28,31)(29,32)(30,33)(36,42)(37,43)(38,44)(39,45)(40,41)(46,54)(47,55)(48,51)(49,52)(50,53), (6,20,14)(7,16,15)(8,17,11)(9,18,12)(10,19,13)(21,35,27)(22,31,28)(23,32,29)(24,33,30)(25,34,26)(41,55,47)(42,51,48)(43,52,49)(44,53,50)(45,54,46), (2,5)(3,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,12)(13,15)(21,24)(22,23)(26,34)(27,33)(28,32)(29,31)(30,35)(36,37)(38,40)(41,44)(42,43)(46,54)(47,53)(48,52)(49,51)(50,55)(56,57)(58,60)>;

G:=Group( (1,59,39)(2,60,40)(3,56,36)(4,57,37)(5,58,38)(6,54,34)(7,55,35)(8,51,31)(9,52,32)(10,53,33)(11,42,22)(12,43,23)(13,44,24)(14,45,25)(15,41,21)(16,47,27)(17,48,28)(18,49,29)(19,50,30)(20,46,26), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,26)(2,27)(3,28)(4,29)(5,30)(6,14)(7,15)(8,11)(9,12)(10,13)(16,60)(17,56)(18,57)(19,58)(20,59)(21,35)(22,31)(23,32)(24,33)(25,34)(36,48)(37,49)(38,50)(39,46)(40,47)(41,55)(42,51)(43,52)(44,53)(45,54), (1,25)(2,21)(3,22)(4,23)(5,24)(6,20)(7,16)(8,17)(9,18)(10,19)(11,56)(12,57)(13,58)(14,59)(15,60)(26,34)(27,35)(28,31)(29,32)(30,33)(36,42)(37,43)(38,44)(39,45)(40,41)(46,54)(47,55)(48,51)(49,52)(50,53), (6,20,14)(7,16,15)(8,17,11)(9,18,12)(10,19,13)(21,35,27)(22,31,28)(23,32,29)(24,33,30)(25,34,26)(41,55,47)(42,51,48)(43,52,49)(44,53,50)(45,54,46), (2,5)(3,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,12)(13,15)(21,24)(22,23)(26,34)(27,33)(28,32)(29,31)(30,35)(36,37)(38,40)(41,44)(42,43)(46,54)(47,53)(48,52)(49,51)(50,55)(56,57)(58,60) );

G=PermutationGroup([[(1,59,39),(2,60,40),(3,56,36),(4,57,37),(5,58,38),(6,54,34),(7,55,35),(8,51,31),(9,52,32),(10,53,33),(11,42,22),(12,43,23),(13,44,24),(14,45,25),(15,41,21),(16,47,27),(17,48,28),(18,49,29),(19,50,30),(20,46,26)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,14),(7,15),(8,11),(9,12),(10,13),(16,60),(17,56),(18,57),(19,58),(20,59),(21,35),(22,31),(23,32),(24,33),(25,34),(36,48),(37,49),(38,50),(39,46),(40,47),(41,55),(42,51),(43,52),(44,53),(45,54)], [(1,25),(2,21),(3,22),(4,23),(5,24),(6,20),(7,16),(8,17),(9,18),(10,19),(11,56),(12,57),(13,58),(14,59),(15,60),(26,34),(27,35),(28,31),(29,32),(30,33),(36,42),(37,43),(38,44),(39,45),(40,41),(46,54),(47,55),(48,51),(49,52),(50,53)], [(6,20,14),(7,16,15),(8,17,11),(9,18,12),(10,19,13),(21,35,27),(22,31,28),(23,32,29),(24,33,30),(25,34,26),(41,55,47),(42,51,48),(43,52,49),(44,53,50),(45,54,46)], [(2,5),(3,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,12),(13,15),(21,24),(22,23),(26,34),(27,33),(28,32),(29,31),(30,35),(36,37),(38,40),(41,44),(42,43),(46,54),(47,53),(48,52),(49,51),(50,55),(56,57),(58,60)]])

39 conjugacy classes

class 1 2A2B3A3B3C3D3E 4 5A5B6A6B6C6D10A10B12A12B15A15B15C15D15E···15P30A30B30C30D
order122333334556666101012121515151515···1530303030
size133011888302233303066303022228···86666

39 irreducible representations

dim11112222223366
type+++++++
imageC1C2C3C6S3D5C3×S3C3×D5D15C3×D15S4C3×S4C5⋊S4C3×C5⋊S4
kernelC3×C5⋊S4A4×C15C5⋊S4C5×A4C2×C30C3×A4C2×C10A4C2×C6C22C15C5C3C1
# reps11221224482424

Matrix representation of C3×C5⋊S4 in GL5(𝔽61)

10000
01000
004700
000470
000047
,
3142000
1912000
00100
00010
00001
,
10000
01000
00010
00100
00606060
,
10000
01000
00606060
00001
00010
,
601000
600000
00100
00001
00606060
,
3142000
1230000
00100
00001
00010

G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,47,0,0,0,0,0,47,0,0,0,0,0,47],[31,19,0,0,0,42,12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,60,0,0,1,0,60,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,60,0,0,0,0,60,0,1,0,0,60,1,0],[60,60,0,0,0,1,0,0,0,0,0,0,1,0,60,0,0,0,0,60,0,0,0,1,60],[31,12,0,0,0,42,30,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

C3×C5⋊S4 in GAP, Magma, Sage, TeX

C_3\times C_5\rtimes S_4
% in TeX

G:=Group("C3xC5:S4");
// GroupNames label

G:=SmallGroup(360,139);
// by ID

G=gap.SmallGroup(360,139);
# by ID

G:=PCGroup([6,-2,-3,-3,-5,-2,2,218,1731,5404,916,3245,1637]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^5=c^2=d^2=e^3=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Subgroup lattice of C3×C5⋊S4 in TeX

׿
×
𝔽