Extensions 1→N→G→Q→1 with N=C22 and Q=D52

Direct product G=N×Q with N=C22 and Q=D52

Semidirect products G=N:Q with N=C22 and Q=D52
extensionφ:Q→Aut NdρLabelID
C221D52 = D5×C5⋊D4φ: D52/C5×D5C2 ⊆ Aut C22404C2^2:1D5^2400,179
C222D52 = D10⋊D10φ: D52/C5⋊D5C2 ⊆ Aut C22204+C2^2:2D5^2400,180

Non-split extensions G=N.Q with N=C22 and Q=D52
extensionφ:Q→Aut NdρLabelID
C22.1D52 = Dic5.D10φ: D52/C5×D5C2 ⊆ Aut C22404C2^2.1D5^2400,173
C22.2D52 = D10.4D10φ: D52/C5⋊D5C2 ⊆ Aut C22404-C2^2.2D5^2400,174
C22.3D52 = Dic52central extension (φ=1)80C2^2.3D5^2400,71
C22.4D52 = D10⋊Dic5central extension (φ=1)80C2^2.4D5^2400,72
C22.5D52 = C10.D20central extension (φ=1)40C2^2.5D5^2400,73
C22.6D52 = Dic5⋊Dic5central extension (φ=1)80C2^2.6D5^2400,74
C22.7D52 = C10.Dic10central extension (φ=1)80C2^2.7D5^2400,75
C22.8D52 = C2×D5×Dic5central extension (φ=1)80C2^2.8D5^2400,172
C22.9D52 = C2×Dic52D5central extension (φ=1)40C2^2.9D5^2400,175
C22.10D52 = C2×C522D4central extension (φ=1)80C2^2.10D5^2400,176
C22.11D52 = C2×C5⋊D20central extension (φ=1)40C2^2.11D5^2400,177
C22.12D52 = C2×C522Q8central extension (φ=1)80C2^2.12D5^2400,178