Copied to
clipboard

G = C2xC5:D20order 400 = 24·52

Direct product of C2 and C5:D20

direct product, metabelian, supersoluble, monomial

Aliases: C2xC5:D20, C10:2D20, D10:5D10, Dic5:4D10, C102.11C22, (C5xC10):3D4, C5:3(C2xD20), C52:5(C2xD4), C22.11D52, C10:1(C5:D4), (C2xDic5):4D5, (C22xD5):2D5, (C10xDic5):5C2, (C2xC10).15D10, (D5xC10):6C22, (C5xC10).15C23, (C5xDic5):4C22, C10.15(C22xD5), (D5xC2xC10):2C2, C5:1(C2xC5:D4), C2.15(C2xD52), (C22xC5:D5):1C2, (C2xC5:D5):3C22, SmallGroup(400,177)

Series: Derived Chief Lower central Upper central

C1C5xC10 — C2xC5:D20
C1C5C52C5xC10D5xC10C5:D20 — C2xC5:D20
C52C5xC10 — C2xC5:D20
C1C22

Generators and relations for C2xC5:D20
 G = < a,b,c,d | a2=b5=c20=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 1004 in 140 conjugacy classes, 40 normal (18 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C5, C2xC4, D4, C23, D5, C10, C10, C10, C2xD4, Dic5, C20, D10, D10, C2xC10, C2xC10, C52, D20, C2xDic5, C5:D4, C2xC20, C22xD5, C22xD5, C22xC10, C5xD5, C5:D5, C5xC10, C5xC10, C2xD20, C2xC5:D4, C5xDic5, D5xC10, D5xC10, C2xC5:D5, C2xC5:D5, C102, C5:D20, C10xDic5, D5xC2xC10, C22xC5:D5, C2xC5:D20
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, D10, D20, C5:D4, C22xD5, C2xD20, C2xC5:D4, D52, C5:D20, C2xD52, C2xC5:D20

Smallest permutation representation of C2xC5:D20
On 40 points
Generators in S40
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)
(1 13 5 17 9)(2 10 18 6 14)(3 15 7 19 11)(4 12 20 8 16)(21 33 25 37 29)(22 30 38 26 34)(23 35 27 39 31)(24 32 40 28 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 27)(2 26)(3 25)(4 24)(5 23)(6 22)(7 21)(8 40)(9 39)(10 38)(11 37)(12 36)(13 35)(14 34)(15 33)(16 32)(17 31)(18 30)(19 29)(20 28)

G:=sub<Sym(40)| (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32), (1,13,5,17,9)(2,10,18,6,14)(3,15,7,19,11)(4,12,20,8,16)(21,33,25,37,29)(22,30,38,26,34)(23,35,27,39,31)(24,32,40,28,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28)>;

G:=Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32), (1,13,5,17,9)(2,10,18,6,14)(3,15,7,19,11)(4,12,20,8,16)(21,33,25,37,29)(22,30,38,26,34)(23,35,27,39,31)(24,32,40,28,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,27)(2,26)(3,25)(4,24)(5,23)(6,22)(7,21)(8,40)(9,39)(10,38)(11,37)(12,36)(13,35)(14,34)(15,33)(16,32)(17,31)(18,30)(19,29)(20,28) );

G=PermutationGroup([[(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32)], [(1,13,5,17,9),(2,10,18,6,14),(3,15,7,19,11),(4,12,20,8,16),(21,33,25,37,29),(22,30,38,26,34),(23,35,27,39,31),(24,32,40,28,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,27),(2,26),(3,25),(4,24),(5,23),(6,22),(7,21),(8,40),(9,39),(10,38),(11,37),(12,36),(13,35),(14,34),(15,33),(16,32),(17,31),(18,30),(19,29),(20,28)]])

58 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B5A5B5C5D5E5F5G5H10A···10L10M···10X10Y···10AF20A···20H
order12222222445555555510···1010···1010···1020···20
size1111101050501010222244442···24···410···1010···10

58 irreducible representations

dim1111122222222444
type+++++++++++++++
imageC1C2C2C2C2D4D5D5D10D10D10D20C5:D4D52C5:D20C2xD52
kernelC2xC5:D20C5:D20C10xDic5D5xC2xC10C22xC5:D5C5xC10C2xDic5C22xD5Dic5D10C2xC10C10C10C22C2C2
# reps1411122244488484

Matrix representation of C2xC5:D20 in GL6(F41)

4000000
0400000
001000
000100
000010
000001
,
100000
010000
0004000
001600
000010
000001
,
1250000
36400000
00352300
0018600
0000040
000016
,
100000
36400000
0004000
0040000
000016
0000040

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,36,0,0,0,0,25,40,0,0,0,0,0,0,35,18,0,0,0,0,23,6,0,0,0,0,0,0,0,1,0,0,0,0,40,6],[1,36,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,6,40] >;

C2xC5:D20 in GAP, Magma, Sage, TeX

C_2\times C_5\rtimes D_{20}
% in TeX

G:=Group("C2xC5:D20");
// GroupNames label

G:=SmallGroup(400,177);
// by ID

G=gap.SmallGroup(400,177);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,121,55,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^20=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<