metabelian, supersoluble, monomial
Aliases: D10.4D10, Dic5.4D10, C102.8C22, C5⋊D4⋊1D5, C22.2D52, (D5×Dic5)⋊2C2, (C2×C10).4D10, C52⋊7(C4○D4), C52⋊2D4⋊3C2, C5⋊4(D4⋊2D5), C52⋊2Q8⋊5C2, (C5×C10).12C23, (D5×C10).4C22, C10.12(C22×D5), (C5×Dic5).5C22, C52⋊6C4.12C22, C2.13(C2×D52), (C5×C5⋊D4)⋊2C2, (C2×C52⋊6C4)⋊5C2, SmallGroup(400,174)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10.4D10
G = < a,b,c,d | a10=b2=1, c10=d2=a5, bab=cac-1=dad-1=a-1, cbc-1=a3b, dbd-1=a8b, dcd-1=c9 >
Subgroups: 508 in 96 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, D4, Q8, D5, C10, C10, C4○D4, Dic5, Dic5, C20, D10, C2×C10, C2×C10, C52, Dic10, C4×D5, C2×Dic5, C5⋊D4, C5⋊D4, C5×D4, C5×D5, C5×C10, C5×C10, D4⋊2D5, C5×Dic5, C52⋊6C4, D5×C10, C102, D5×Dic5, C52⋊2D4, C52⋊2Q8, C5×C5⋊D4, C2×C52⋊6C4, D10.4D10
Quotients: C1, C2, C22, C23, D5, C4○D4, D10, C22×D5, D4⋊2D5, D52, C2×D52, D10.4D10
(1 15 9 3 17 11 5 19 13 7)(2 8 14 20 6 12 18 4 10 16)(21 27 33 39 25 31 37 23 29 35)(22 36 30 24 38 32 26 40 34 28)
(1 10)(2 13)(3 12)(4 15)(5 14)(6 17)(7 16)(8 19)(9 18)(11 20)(21 32)(22 31)(23 34)(24 33)(25 36)(26 35)(27 38)(28 37)(29 40)(30 39)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 34 11 24)(2 23 12 33)(3 32 13 22)(4 21 14 31)(5 30 15 40)(6 39 16 29)(7 28 17 38)(8 37 18 27)(9 26 19 36)(10 35 20 25)
G:=sub<Sym(40)| (1,15,9,3,17,11,5,19,13,7)(2,8,14,20,6,12,18,4,10,16)(21,27,33,39,25,31,37,23,29,35)(22,36,30,24,38,32,26,40,34,28), (1,10)(2,13)(3,12)(4,15)(5,14)(6,17)(7,16)(8,19)(9,18)(11,20)(21,32)(22,31)(23,34)(24,33)(25,36)(26,35)(27,38)(28,37)(29,40)(30,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34,11,24)(2,23,12,33)(3,32,13,22)(4,21,14,31)(5,30,15,40)(6,39,16,29)(7,28,17,38)(8,37,18,27)(9,26,19,36)(10,35,20,25)>;
G:=Group( (1,15,9,3,17,11,5,19,13,7)(2,8,14,20,6,12,18,4,10,16)(21,27,33,39,25,31,37,23,29,35)(22,36,30,24,38,32,26,40,34,28), (1,10)(2,13)(3,12)(4,15)(5,14)(6,17)(7,16)(8,19)(9,18)(11,20)(21,32)(22,31)(23,34)(24,33)(25,36)(26,35)(27,38)(28,37)(29,40)(30,39), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,34,11,24)(2,23,12,33)(3,32,13,22)(4,21,14,31)(5,30,15,40)(6,39,16,29)(7,28,17,38)(8,37,18,27)(9,26,19,36)(10,35,20,25) );
G=PermutationGroup([[(1,15,9,3,17,11,5,19,13,7),(2,8,14,20,6,12,18,4,10,16),(21,27,33,39,25,31,37,23,29,35),(22,36,30,24,38,32,26,40,34,28)], [(1,10),(2,13),(3,12),(4,15),(5,14),(6,17),(7,16),(8,19),(9,18),(11,20),(21,32),(22,31),(23,34),(24,33),(25,36),(26,35),(27,38),(28,37),(29,40),(30,39)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,34,11,24),(2,23,12,33),(3,32,13,22),(4,21,14,31),(5,30,15,40),(6,39,16,29),(7,28,17,38),(8,37,18,27),(9,26,19,36),(10,35,20,25)]])
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | 10B | 10C | 10D | 10E | ··· | 10T | 10U | 10V | 10W | 10X | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | 10 | 10 | 10 | 10 | 25 | 25 | 50 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D4⋊2D5 | D52 | C2×D52 | D10.4D10 |
kernel | D10.4D10 | D5×Dic5 | C52⋊2D4 | C52⋊2Q8 | C5×C5⋊D4 | C2×C52⋊6C4 | C5⋊D4 | C52 | Dic5 | D10 | C2×C10 | C5 | C22 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 4 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 |
Matrix representation of D10.4D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 34 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 40 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 7 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 34 | 40 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 34 |
0 | 0 | 0 | 0 | 7 | 7 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 7 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 34 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,7,0,0,0,0,34,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,7,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,34,0,0,0,0,0,40,0,0,0,0,0,0,40,7,0,0,0,0,34,7],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,7,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,34,1] >;
D10.4D10 in GAP, Magma, Sage, TeX
D_{10}._4D_{10}
% in TeX
G:=Group("D10.4D10");
// GroupNames label
G:=SmallGroup(400,174);
// by ID
G=gap.SmallGroup(400,174);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,55,218,116,970,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=1,c^10=d^2=a^5,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^3*b,d*b*d^-1=a^8*b,d*c*d^-1=c^9>;
// generators/relations