Copied to
clipboard

G = Dic5.D10order 400 = 24·52

3rd non-split extension by Dic5 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial

Aliases: D10.3D10, Dic5.3D10, C102.7C22, C5⋊D43D5, C22.1D52, C54(C4○D20), C5⋊D202C2, (D5×Dic5)⋊5C2, (C2×Dic5)⋊3D5, (C2×C10).3D10, C526(C4○D4), C527D41C2, C53(D42D5), C522Q84C2, (C10×Dic5)⋊6C2, Dic52D52C2, (C5×C10).11C23, (D5×C10).3C22, C10.11(C22×D5), C526C4.3C22, (C5×Dic5).21C22, C2.12(C2×D52), (C5×C5⋊D4)⋊1C2, (C2×C5⋊D5).2C22, SmallGroup(400,173)

Series: Derived Chief Lower central Upper central

C1C5×C10 — Dic5.D10
C1C5C52C5×C10D5×C10D5×Dic5 — Dic5.D10
C52C5×C10 — Dic5.D10
C1C2C22

Generators and relations for Dic5.D10
 G = < a,b,c,d | a10=c10=1, b2=d2=a5, bab-1=cac-1=dad-1=a-1, cbc-1=dbd-1=a5b, dcd-1=c-1 >

Subgroups: 596 in 96 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2 [×3], C4 [×4], C22, C22 [×2], C5 [×2], C5 [×2], C2×C4 [×3], D4 [×3], Q8, D5 [×5], C10 [×2], C10 [×7], C4○D4, Dic5 [×3], Dic5 [×4], C20 [×3], D10, D10 [×4], C2×C10 [×2], C2×C10 [×3], C52, Dic10 [×2], C4×D5 [×3], D20, C2×Dic5, C2×Dic5, C5⋊D4, C5⋊D4 [×5], C2×C20, C5×D4, C5×D5, C5⋊D5, C5×C10, C5×C10, C4○D20, D42D5, C5×Dic5 [×3], C526C4, D5×C10, C2×C5⋊D5, C102, D5×Dic5, Dic52D5, C5⋊D20, C522Q8, C10×Dic5, C5×C5⋊D4, C527D4, Dic5.D10
Quotients: C1, C2 [×7], C22 [×7], C23, D5 [×2], C4○D4, D10 [×6], C22×D5 [×2], C4○D20, D42D5, D52, C2×D52, Dic5.D10

Smallest permutation representation of Dic5.D10
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 26 6 21)(2 25 7 30)(3 24 8 29)(4 23 9 28)(5 22 10 27)(11 34 16 39)(12 33 17 38)(13 32 18 37)(14 31 19 36)(15 40 20 35)
(1 29 5 25 9 21 3 27 7 23)(2 28 6 24 10 30 4 26 8 22)(11 31 17 35 13 39 19 33 15 37)(12 40 18 34 14 38 20 32 16 36)
(1 34 6 39)(2 33 7 38)(3 32 8 37)(4 31 9 36)(5 40 10 35)(11 21 16 26)(12 30 17 25)(13 29 18 24)(14 28 19 23)(15 27 20 22)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,26,6,21)(2,25,7,30)(3,24,8,29)(4,23,9,28)(5,22,10,27)(11,34,16,39)(12,33,17,38)(13,32,18,37)(14,31,19,36)(15,40,20,35), (1,29,5,25,9,21,3,27,7,23)(2,28,6,24,10,30,4,26,8,22)(11,31,17,35,13,39,19,33,15,37)(12,40,18,34,14,38,20,32,16,36), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,21,16,26)(12,30,17,25)(13,29,18,24)(14,28,19,23)(15,27,20,22)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,26,6,21)(2,25,7,30)(3,24,8,29)(4,23,9,28)(5,22,10,27)(11,34,16,39)(12,33,17,38)(13,32,18,37)(14,31,19,36)(15,40,20,35), (1,29,5,25,9,21,3,27,7,23)(2,28,6,24,10,30,4,26,8,22)(11,31,17,35,13,39,19,33,15,37)(12,40,18,34,14,38,20,32,16,36), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,21,16,26)(12,30,17,25)(13,29,18,24)(14,28,19,23)(15,27,20,22) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,26,6,21),(2,25,7,30),(3,24,8,29),(4,23,9,28),(5,22,10,27),(11,34,16,39),(12,33,17,38),(13,32,18,37),(14,31,19,36),(15,40,20,35)], [(1,29,5,25,9,21,3,27,7,23),(2,28,6,24,10,30,4,26,8,22),(11,31,17,35,13,39,19,33,15,37),(12,40,18,34,14,38,20,32,16,36)], [(1,34,6,39),(2,33,7,38),(3,32,8,37),(4,31,9,36),(5,40,10,35),(11,21,16,26),(12,30,17,25),(13,29,18,24),(14,28,19,23),(15,27,20,22)])

52 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D5E5F5G5H10A···10H10I···10V10W10X20A···20H20I20J
order12222444445555555510···1010···10101020···202020
size112105055101050222244442···24···4202010···102020

52 irreducible representations

dim1111111122222224444
type+++++++++++++-++
imageC1C2C2C2C2C2C2C2D5D5C4○D4D10D10D10C4○D20D42D5D52C2×D52Dic5.D10
kernelDic5.D10D5×Dic5Dic52D5C5⋊D20C522Q8C10×Dic5C5×C5⋊D4C527D4C2×Dic5C5⋊D4C52Dic5D10C2×C10C5C5C22C2C1
# reps1111111122262482448

Matrix representation of Dic5.D10 in GL6(𝔽41)

4000000
0400000
001000
000100
00003440
000010
,
12230000
24290000
0040000
0004000
000010
00003440
,
12230000
33290000
00403400
007700
000010
00003440
,
15390000
31260000
001700
0004000
000010
00003440

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,1,0,0,0,0,40,0],[12,24,0,0,0,0,23,29,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40],[12,33,0,0,0,0,23,29,0,0,0,0,0,0,40,7,0,0,0,0,34,7,0,0,0,0,0,0,1,34,0,0,0,0,0,40],[15,31,0,0,0,0,39,26,0,0,0,0,0,0,1,0,0,0,0,0,7,40,0,0,0,0,0,0,1,34,0,0,0,0,0,40] >;

Dic5.D10 in GAP, Magma, Sage, TeX

{\rm Dic}_5.D_{10}
% in TeX

G:=Group("Dic5.D10");
// GroupNames label

G:=SmallGroup(400,173);
// by ID

G=gap.SmallGroup(400,173);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,55,218,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^10=c^10=1,b^2=d^2=a^5,b*a*b^-1=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽