Extensions 1→N→G→Q→1 with N=D5xC20 and Q=C2

Direct product G=NxQ with N=D5xC20 and Q=C2
dρLabelID
D5xC2xC2080D5xC2xC20400,182

Semidirect products G=N:Q with N=D5xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC20):1C2 = D10.9D10φ: C2/C1C2 ⊆ Out D5xC20404(D5xC20):1C2400,167
(D5xC20):2C2 = D20:5D5φ: C2/C1C2 ⊆ Out D5xC20804-(D5xC20):2C2400,164
(D5xC20):3C2 = Dic10:5D5φ: C2/C1C2 ⊆ Out D5xC20404+(D5xC20):3C2400,168
(D5xC20):4C2 = D5xD20φ: C2/C1C2 ⊆ Out D5xC20404+(D5xC20):4C2400,170
(D5xC20):5C2 = C5xD4xD5φ: C2/C1C2 ⊆ Out D5xC20404(D5xC20):5C2400,185
(D5xC20):6C2 = C5xD4:2D5φ: C2/C1C2 ⊆ Out D5xC20404(D5xC20):6C2400,186
(D5xC20):7C2 = C5xQ8:2D5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20):7C2400,188
(D5xC20):8C2 = C4xD52φ: C2/C1C2 ⊆ Out D5xC20404(D5xC20):8C2400,169
(D5xC20):9C2 = C5xC4oD20φ: C2/C1C2 ⊆ Out D5xC20402(D5xC20):9C2400,184

Non-split extensions G=N.Q with N=D5xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC20).1C2 = C20.30D10φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).1C2400,62
(D5xC20).2C2 = C20.12F5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).2C2400,143
(D5xC20).3C2 = C20:5F5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).3C2400,145
(D5xC20).4C2 = D5xDic10φ: C2/C1C2 ⊆ Out D5xC20804-(D5xC20).4C2400,163
(D5xC20).5C2 = C5xQ8xD5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).5C2400,187
(D5xC20).6C2 = D5xC5:2C8φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).6C2400,60
(D5xC20).7C2 = C5xC8:D5φ: C2/C1C2 ⊆ Out D5xC20802(D5xC20).7C2400,77
(D5xC20).8C2 = C5xC4.F5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).8C2400,136
(D5xC20).9C2 = C5xC4:F5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).9C2400,138
(D5xC20).10C2 = C5xD5:C8φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).10C2400,135
(D5xC20).11C2 = C20xF5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).11C2400,137
(D5xC20).12C2 = C20.14F5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).12C2400,142
(D5xC20).13C2 = C4xD5.D5φ: C2/C1C2 ⊆ Out D5xC20804(D5xC20).13C2400,144
(D5xC20).14C2 = D5xC40φ: trivial image802(D5xC20).14C2400,76

׿
x
:
Z
F
o
wr
Q
<