Copied to
clipboard

G = D10.9D10order 400 = 24·52

1st non-split extension by D10 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial

Aliases: D10.9D10, C20.32D10, Dic5.10D10, C4.17D52, (C4×D5)⋊4D5, (D5×C20)⋊1C2, C52(C4○D20), C5⋊D207C2, C524(C4○D4), C522D46C2, C522Q86C2, (C5×C10).5C23, C10.5(C22×D5), (C5×C20).31C22, (D5×C10).10C22, C526C4.11C22, (C5×Dic5).14C22, C2.8(C2×D52), (C4×C5⋊D5)⋊6C2, (C2×C5⋊D5).14C22, SmallGroup(400,167)

Series: Derived Chief Lower central Upper central

C1C5×C10 — D10.9D10
C1C5C52C5×C10D5×C10C522D4 — D10.9D10
C52C5×C10 — D10.9D10
C1C4

Generators and relations for D10.9D10
 G = < a,b,c,d | a10=b2=1, c10=d2=a5, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a5b, dcd-1=c9 >

Subgroups: 604 in 96 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2×C4, D4, Q8, D5, C10, C10, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C52, Dic10, C4×D5, C4×D5, D20, C5⋊D4, C2×C20, C5×D5, C5⋊D5, C5×C10, C4○D20, C5×Dic5, C526C4, C5×C20, D5×C10, C2×C5⋊D5, C522D4, C5⋊D20, C522Q8, D5×C20, C4×C5⋊D5, D10.9D10
Quotients: C1, C2, C22, C23, D5, C4○D4, D10, C22×D5, C4○D20, D52, C2×D52, D10.9D10

Smallest permutation representation of D10.9D10
On 40 points
Generators in S40
(1 19 17 15 13 11 9 7 5 3)(2 20 18 16 14 12 10 8 6 4)(21 23 25 27 29 31 33 35 37 39)(22 24 26 28 30 32 34 36 38 40)
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 40 11 30)(2 29 12 39)(3 38 13 28)(4 27 14 37)(5 36 15 26)(6 25 16 35)(7 34 17 24)(8 23 18 33)(9 32 19 22)(10 21 20 31)

G:=sub<Sym(40)| (1,19,17,15,13,11,9,7,5,3)(2,20,18,16,14,12,10,8,6,4)(21,23,25,27,29,31,33,35,37,39)(22,24,26,28,30,32,34,36,38,40), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,40,11,30)(2,29,12,39)(3,38,13,28)(4,27,14,37)(5,36,15,26)(6,25,16,35)(7,34,17,24)(8,23,18,33)(9,32,19,22)(10,21,20,31)>;

G:=Group( (1,19,17,15,13,11,9,7,5,3)(2,20,18,16,14,12,10,8,6,4)(21,23,25,27,29,31,33,35,37,39)(22,24,26,28,30,32,34,36,38,40), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,40,11,30)(2,29,12,39)(3,38,13,28)(4,27,14,37)(5,36,15,26)(6,25,16,35)(7,34,17,24)(8,23,18,33)(9,32,19,22)(10,21,20,31) );

G=PermutationGroup([[(1,19,17,15,13,11,9,7,5,3),(2,20,18,16,14,12,10,8,6,4),(21,23,25,27,29,31,33,35,37,39),(22,24,26,28,30,32,34,36,38,40)], [(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,40,11,30),(2,29,12,39),(3,38,13,28),(4,27,14,37),(5,36,15,26),(6,25,16,35),(7,34,17,24),(8,23,18,33),(9,32,19,22),(10,21,20,31)]])

58 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H10I···10P20A···20H20I···20P20Q···20X
order122224444455555555101010101010101010···1020···2020···2020···20
size1110105011101050222244442222444410···102···24···410···10

58 irreducible representations

dim111111222222444
type++++++++++++
imageC1C2C2C2C2C2D5C4○D4D10D10D10C4○D20D52C2×D52D10.9D10
kernelD10.9D10C522D4C5⋊D20C522Q8D5×C20C4×C5⋊D5C4×D5C52Dic5C20D10C5C4C2C1
# reps1121214244416448

Matrix representation of D10.9D10 in GL4(𝔽41) generated by

34700
34100
0010
0001
,
141100
272700
0010
0001
,
9000
0900
00406
003535
,
30900
321100
00406
0001
G:=sub<GL(4,GF(41))| [34,34,0,0,7,1,0,0,0,0,1,0,0,0,0,1],[14,27,0,0,11,27,0,0,0,0,1,0,0,0,0,1],[9,0,0,0,0,9,0,0,0,0,40,35,0,0,6,35],[30,32,0,0,9,11,0,0,0,0,40,0,0,0,6,1] >;

D10.9D10 in GAP, Magma, Sage, TeX

D_{10}._9D_{10}
% in TeX

G:=Group("D10.9D10");
// GroupNames label

G:=SmallGroup(400,167);
// by ID

G=gap.SmallGroup(400,167);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,121,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=1,c^10=d^2=a^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽