Copied to
clipboard

G = C5xD5:C8order 400 = 24·52

Direct product of C5 and D5:C8

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C5xD5:C8, D5:C40, C20.3C20, C20.17F5, D10.2C20, C5:C8:3C10, C5:1(C2xC40), (C5xD5):3C8, C52:5(C2xC8), C4.3(C5xF5), (C5xC20).9C4, C2.1(C10xF5), C10.1(C2xC20), (C4xD5).5C10, (D5xC10).8C4, C10.42(C2xF5), (D5xC20).10C2, Dic5.5(C2xC10), (C5xDic5).10C22, (C5xC5:C8):7C2, (C5xC10).13(C2xC4), SmallGroup(400,135)

Series: Derived Chief Lower central Upper central

C1C5 — C5xD5:C8
C1C5C10Dic5C5xDic5C5xC5:C8 — C5xD5:C8
C5 — C5xD5:C8
C1C20

Generators and relations for C5xD5:C8
 G = < a,b,c,d | a5=b5=c2=d8=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b2c >

Subgroups: 120 in 47 conjugacy classes, 28 normal (20 characteristic)
Quotients: C1, C2, C4, C22, C5, C8, C2xC4, C10, C2xC8, C20, F5, C2xC10, C40, C2xC20, C2xF5, C2xC40, D5:C8, C5xF5, C10xF5, C5xD5:C8
5C2
5C2
4C5
5C22
5C4
4C10
5C10
5C10
5C8
5C2xC4
5C8
4C20
5C2xC10
5C20
5C2xC8
5C2xC20
5C40
5C40
5C2xC40

Smallest permutation representation of C5xD5:C8
On 80 points
Generators in S80
(1 21 75 63 33)(2 22 76 64 34)(3 23 77 57 35)(4 24 78 58 36)(5 17 79 59 37)(6 18 80 60 38)(7 19 73 61 39)(8 20 74 62 40)(9 55 25 41 71)(10 56 26 42 72)(11 49 27 43 65)(12 50 28 44 66)(13 51 29 45 67)(14 52 30 46 68)(15 53 31 47 69)(16 54 32 48 70)
(1 21 75 63 33)(2 64 22 34 76)(3 35 57 77 23)(4 78 36 24 58)(5 17 79 59 37)(6 60 18 38 80)(7 39 61 73 19)(8 74 40 20 62)(9 55 25 41 71)(10 42 56 72 26)(11 65 43 27 49)(12 28 66 50 44)(13 51 29 45 67)(14 46 52 68 30)(15 69 47 31 53)(16 32 70 54 48)
(1 47)(2 16)(3 55)(4 72)(5 43)(6 12)(7 51)(8 68)(9 35)(10 24)(11 79)(13 39)(14 20)(15 75)(17 65)(18 50)(19 29)(21 69)(22 54)(23 25)(26 58)(27 37)(28 80)(30 62)(31 33)(32 76)(34 70)(36 42)(38 66)(40 46)(41 77)(44 60)(45 73)(48 64)(49 59)(52 74)(53 63)(56 78)(57 71)(61 67)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,21,75,63,33)(2,22,76,64,34)(3,23,77,57,35)(4,24,78,58,36)(5,17,79,59,37)(6,18,80,60,38)(7,19,73,61,39)(8,20,74,62,40)(9,55,25,41,71)(10,56,26,42,72)(11,49,27,43,65)(12,50,28,44,66)(13,51,29,45,67)(14,52,30,46,68)(15,53,31,47,69)(16,54,32,48,70), (1,21,75,63,33)(2,64,22,34,76)(3,35,57,77,23)(4,78,36,24,58)(5,17,79,59,37)(6,60,18,38,80)(7,39,61,73,19)(8,74,40,20,62)(9,55,25,41,71)(10,42,56,72,26)(11,65,43,27,49)(12,28,66,50,44)(13,51,29,45,67)(14,46,52,68,30)(15,69,47,31,53)(16,32,70,54,48), (1,47)(2,16)(3,55)(4,72)(5,43)(6,12)(7,51)(8,68)(9,35)(10,24)(11,79)(13,39)(14,20)(15,75)(17,65)(18,50)(19,29)(21,69)(22,54)(23,25)(26,58)(27,37)(28,80)(30,62)(31,33)(32,76)(34,70)(36,42)(38,66)(40,46)(41,77)(44,60)(45,73)(48,64)(49,59)(52,74)(53,63)(56,78)(57,71)(61,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,21,75,63,33)(2,22,76,64,34)(3,23,77,57,35)(4,24,78,58,36)(5,17,79,59,37)(6,18,80,60,38)(7,19,73,61,39)(8,20,74,62,40)(9,55,25,41,71)(10,56,26,42,72)(11,49,27,43,65)(12,50,28,44,66)(13,51,29,45,67)(14,52,30,46,68)(15,53,31,47,69)(16,54,32,48,70), (1,21,75,63,33)(2,64,22,34,76)(3,35,57,77,23)(4,78,36,24,58)(5,17,79,59,37)(6,60,18,38,80)(7,39,61,73,19)(8,74,40,20,62)(9,55,25,41,71)(10,42,56,72,26)(11,65,43,27,49)(12,28,66,50,44)(13,51,29,45,67)(14,46,52,68,30)(15,69,47,31,53)(16,32,70,54,48), (1,47)(2,16)(3,55)(4,72)(5,43)(6,12)(7,51)(8,68)(9,35)(10,24)(11,79)(13,39)(14,20)(15,75)(17,65)(18,50)(19,29)(21,69)(22,54)(23,25)(26,58)(27,37)(28,80)(30,62)(31,33)(32,76)(34,70)(36,42)(38,66)(40,46)(41,77)(44,60)(45,73)(48,64)(49,59)(52,74)(53,63)(56,78)(57,71)(61,67), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,21,75,63,33),(2,22,76,64,34),(3,23,77,57,35),(4,24,78,58,36),(5,17,79,59,37),(6,18,80,60,38),(7,19,73,61,39),(8,20,74,62,40),(9,55,25,41,71),(10,56,26,42,72),(11,49,27,43,65),(12,50,28,44,66),(13,51,29,45,67),(14,52,30,46,68),(15,53,31,47,69),(16,54,32,48,70)], [(1,21,75,63,33),(2,64,22,34,76),(3,35,57,77,23),(4,78,36,24,58),(5,17,79,59,37),(6,60,18,38,80),(7,39,61,73,19),(8,74,40,20,62),(9,55,25,41,71),(10,42,56,72,26),(11,65,43,27,49),(12,28,66,50,44),(13,51,29,45,67),(14,46,52,68,30),(15,69,47,31,53),(16,32,70,54,48)], [(1,47),(2,16),(3,55),(4,72),(5,43),(6,12),(7,51),(8,68),(9,35),(10,24),(11,79),(13,39),(14,20),(15,75),(17,65),(18,50),(19,29),(21,69),(22,54),(23,25),(26,58),(27,37),(28,80),(30,62),(31,33),(32,76),(34,70),(36,42),(38,66),(40,46),(41,77),(44,60),(45,73),(48,64),(49,59),(52,74),(53,63),(56,78),(57,71),(61,67)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

100 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D5E···5I8A···8H10A10B10C10D10E···10I10J···10Q20A···20H20I···20R20S···20Z40A···40AF
order1222444455555···58···81010101010···1010···1020···2020···2020···2040···40
size1155115511114···45···511114···45···51···14···45···55···5

100 irreducible representations

dim111111111111444444
type+++++
imageC1C2C2C4C4C5C8C10C10C20C20C40F5C2xF5D5:C8C5xF5C10xF5C5xD5:C8
kernelC5xD5:C8C5xC5:C8D5xC20C5xC20D5xC10D5:C8C5xD5C5:C8C4xD5C20D10D5C20C10C5C4C2C1
# reps1212248848832112448

Matrix representation of C5xD5:C8 in GL4(F41) generated by

16000
01600
00160
00016
,
16000
301800
110100
20037
,
23700
301800
28605
3213330
,
30170
00321
01380
00140
G:=sub<GL(4,GF(41))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,30,11,2,0,18,0,0,0,0,10,0,0,0,0,37],[23,30,28,32,7,18,6,13,0,0,0,33,0,0,5,0],[3,0,0,0,0,0,1,0,17,32,38,14,0,1,0,0] >;

C5xD5:C8 in GAP, Magma, Sage, TeX

C_5\times D_5\rtimes C_8
% in TeX

G:=Group("C5xD5:C8");
// GroupNames label

G:=SmallGroup(400,135);
// by ID

G=gap.SmallGroup(400,135);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-5,120,247,69,5765,599]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^2*c>;
// generators/relations

Export

Subgroup lattice of C5xD5:C8 in TeX

׿
x
:
Z
F
o
wr
Q
<