Extensions 1→N→G→Q→1 with N=C20 and Q=Dic5

Direct product G=N×Q with N=C20 and Q=Dic5
dρLabelID
Dic5×C2080Dic5xC20400,83

Semidirect products G=N:Q with N=C20 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C201Dic5 = C205F5φ: Dic5/C5C4 ⊆ Aut C20804C20:1Dic5400,145
C202Dic5 = C4×D5.D5φ: Dic5/C5C4 ⊆ Aut C20804C20:2Dic5400,144
C203Dic5 = C203Dic5φ: Dic5/C10C2 ⊆ Aut C20400C20:3Dic5400,101
C204Dic5 = C4×C526C4φ: Dic5/C10C2 ⊆ Aut C20400C20:4Dic5400,99
C205Dic5 = C5×C4⋊Dic5φ: Dic5/C10C2 ⊆ Aut C2080C20:5Dic5400,85

Non-split extensions G=N.Q with N=C20 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
C20.1Dic5 = C20.12F5φ: Dic5/C5C4 ⊆ Aut C20804C20.1Dic5400,143
C20.2Dic5 = C523C16φ: Dic5/C5C4 ⊆ Aut C20804C20.2Dic5400,57
C20.3Dic5 = C20.14F5φ: Dic5/C5C4 ⊆ Aut C20804C20.3Dic5400,142
C20.4Dic5 = C4.Dic25φ: Dic5/C10C2 ⊆ Aut C202002C20.4Dic5400,10
C20.5Dic5 = C4⋊Dic25φ: Dic5/C10C2 ⊆ Aut C20400C20.5Dic5400,13
C20.6Dic5 = C20.59D10φ: Dic5/C10C2 ⊆ Aut C20200C20.6Dic5400,98
C20.7Dic5 = C252C16φ: Dic5/C10C2 ⊆ Aut C204002C20.7Dic5400,1
C20.8Dic5 = C2×C252C8φ: Dic5/C10C2 ⊆ Aut C20400C20.8Dic5400,9
C20.9Dic5 = C4×Dic25φ: Dic5/C10C2 ⊆ Aut C20400C20.9Dic5400,11
C20.10Dic5 = C527C16φ: Dic5/C10C2 ⊆ Aut C20400C20.10Dic5400,50
C20.11Dic5 = C2×C527C8φ: Dic5/C10C2 ⊆ Aut C20400C20.11Dic5400,97
C20.12Dic5 = C5×C4.Dic5φ: Dic5/C10C2 ⊆ Aut C20402C20.12Dic5400,82
C20.13Dic5 = C5×C52C16central extension (φ=1)802C20.13Dic5400,49
C20.14Dic5 = C10×C52C8central extension (φ=1)80C20.14Dic5400,81

׿
×
𝔽