Extensions 1→N→G→Q→1 with N=D5xC2xC10 and Q=C2

Direct product G=NxQ with N=D5xC2xC10 and Q=C2
dρLabelID
D5xC22xC1080D5xC2^2xC10400,219

Semidirect products G=N:Q with N=D5xC2xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC2xC10):1C2 = C2xC52:2D4φ: C2/C1C2 ⊆ Out D5xC2xC1080(D5xC2xC10):1C2400,176
(D5xC2xC10):2C2 = C2xC5:D20φ: C2/C1C2 ⊆ Out D5xC2xC1040(D5xC2xC10):2C2400,177
(D5xC2xC10):3C2 = D5xC5:D4φ: C2/C1C2 ⊆ Out D5xC2xC10404(D5xC2xC10):3C2400,179
(D5xC2xC10):4C2 = C10xD20φ: C2/C1C2 ⊆ Out D5xC2xC1080(D5xC2xC10):4C2400,183
(D5xC2xC10):5C2 = C5xD4xD5φ: C2/C1C2 ⊆ Out D5xC2xC10404(D5xC2xC10):5C2400,185
(D5xC2xC10):6C2 = C10xC5:D4φ: C2/C1C2 ⊆ Out D5xC2xC1040(D5xC2xC10):6C2400,190
(D5xC2xC10):7C2 = C22xD52φ: C2/C1C2 ⊆ Out D5xC2xC1040(D5xC2xC10):7C2400,218

Non-split extensions G=N.Q with N=D5xC2xC10 and Q=C2
extensionφ:Q→Out NdρLabelID
(D5xC2xC10).1C2 = D10:Dic5φ: C2/C1C2 ⊆ Out D5xC2xC1080(D5xC2xC10).1C2400,72
(D5xC2xC10).2C2 = C5xD10:C4φ: C2/C1C2 ⊆ Out D5xC2xC1080(D5xC2xC10).2C2400,86
(D5xC2xC10).3C2 = C2xD5xDic5φ: C2/C1C2 ⊆ Out D5xC2xC1080(D5xC2xC10).3C2400,172
(D5xC2xC10).4C2 = C5xC22:F5φ: C2/C1C2 ⊆ Out D5xC2xC10404(D5xC2xC10).4C2400,141
(D5xC2xC10).5C2 = D10.D10φ: C2/C1C2 ⊆ Out D5xC2xC10404(D5xC2xC10).5C2400,148
(D5xC2xC10).6C2 = F5xC2xC10φ: C2/C1C2 ⊆ Out D5xC2xC1080(D5xC2xC10).6C2400,214
(D5xC2xC10).7C2 = C22xD5.D5φ: C2/C1C2 ⊆ Out D5xC2xC1080(D5xC2xC10).7C2400,215
(D5xC2xC10).8C2 = D5xC2xC20φ: trivial image80(D5xC2xC10).8C2400,182

׿
x
:
Z
F
o
wr
Q
<