Copied to
clipboard

G = D10.D10order 400 = 24·52

5th non-split extension by D10 of D10 acting via D10/C10=C2

metabelian, supersoluble, monomial

Aliases: C1022C4, D102Dic5, D10.13D10, (C2×C10)⋊6F5, (D5×C10)⋊9C4, (C5×D5).6D4, C5⋊(C23.D5), (C2×C10)⋊1Dic5, C22⋊(D5.D5), C55(C22⋊F5), C10.41(C2×F5), D5.3(C5⋊D4), C525(C22⋊C4), C10.7(C2×Dic5), (C22×D5).2D5, (D5×C10).22C22, (D5×C2×C10).5C2, (C2×D5.D5)⋊2C2, C2.7(C2×D5.D5), (C5×C10).26(C2×C4), SmallGroup(400,148)

Series: Derived Chief Lower central Upper central

C1C5×C10 — D10.D10
C1C5C52C5×D5D5×C10C2×D5.D5 — D10.D10
C52C5×C10 — D10.D10
C1C2C22

Generators and relations for D10.D10
 G = < a,b,c,d | a10=b2=c10=1, d2=a4b, bab=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a6b, dcd-1=a5c-1 >

Subgroups: 424 in 73 conjugacy classes, 25 normal (19 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, C23, D5, D5, C10, C10, C22⋊C4, Dic5, F5, D10, D10, C2×C10, C2×C10, C52, C2×Dic5, C2×F5, C22×D5, C22×C10, C5×D5, C5×D5, C5×C10, C5×C10, C23.D5, C22⋊F5, D5.D5, D5×C10, D5×C10, C102, C2×D5.D5, D5×C2×C10, D10.D10
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, Dic5, F5, D10, C2×Dic5, C5⋊D4, C2×F5, C23.D5, C22⋊F5, D5.D5, C2×D5.D5, D10.D10

Smallest permutation representation of D10.D10
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 20)(8 19)(9 18)(10 17)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)(29 40)(30 39)
(1 9 7 5 3)(2 10 8 6 4)(11 13 15 17 19)(12 14 16 18 20)(21 30 29 28 27 26 25 24 23 22)(31 32 33 34 35 36 37 38 39 40)
(1 38 12 27)(2 31 11 24)(3 34 20 21)(4 37 19 28)(5 40 18 25)(6 33 17 22)(7 36 16 29)(8 39 15 26)(9 32 14 23)(10 35 13 30)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,20)(8,19)(9,18)(10,17)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,40)(30,39), (1,9,7,5,3)(2,10,8,6,4)(11,13,15,17,19)(12,14,16,18,20)(21,30,29,28,27,26,25,24,23,22)(31,32,33,34,35,36,37,38,39,40), (1,38,12,27)(2,31,11,24)(3,34,20,21)(4,37,19,28)(5,40,18,25)(6,33,17,22)(7,36,16,29)(8,39,15,26)(9,32,14,23)(10,35,13,30)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,20)(8,19)(9,18)(10,17)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,40)(30,39), (1,9,7,5,3)(2,10,8,6,4)(11,13,15,17,19)(12,14,16,18,20)(21,30,29,28,27,26,25,24,23,22)(31,32,33,34,35,36,37,38,39,40), (1,38,12,27)(2,31,11,24)(3,34,20,21)(4,37,19,28)(5,40,18,25)(6,33,17,22)(7,36,16,29)(8,39,15,26)(9,32,14,23)(10,35,13,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,20),(8,19),(9,18),(10,17),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,32),(28,31),(29,40),(30,39)], [(1,9,7,5,3),(2,10,8,6,4),(11,13,15,17,19),(12,14,16,18,20),(21,30,29,28,27,26,25,24,23,22),(31,32,33,34,35,36,37,38,39,40)], [(1,38,12,27),(2,31,11,24),(3,34,20,21),(4,37,19,28),(5,40,18,25),(6,33,17,22),(7,36,16,29),(8,39,15,26),(9,32,14,23),(10,35,13,30)]])

46 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D5A5B5C···5G10A···10F10G···10U10V···10AC
order1222224444555···510···1010···1010···10
size112551050505050224···42···24···410···10

46 irreducible representations

dim11111222222444444
type+++++-+-+++
imageC1C2C2C4C4D4D5Dic5D10Dic5C5⋊D4F5C2×F5C22⋊F5D5.D5C2×D5.D5D10.D10
kernelD10.D10C2×D5.D5D5×C2×C10D5×C10C102C5×D5C22×D5D10D10C2×C10D5C2×C10C10C5C22C2C1
# reps12122222228112448

Matrix representation of D10.D10 in GL6(𝔽41)

4000000
0400000
0010000
0043700
00310160
00140018
,
4000000
0400000
00371400
0037400
001837018
003537160
,
100000
0400000
0016000
0001600
00240180
00240018
,
010000
4000000
00230190
00002318
002416180
00240180

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,10,4,31,14,0,0,0,37,0,0,0,0,0,0,16,0,0,0,0,0,0,18],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,37,37,18,35,0,0,14,4,37,37,0,0,0,0,0,16,0,0,0,0,18,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,16,0,24,24,0,0,0,16,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,23,0,24,24,0,0,0,0,16,0,0,0,19,23,18,18,0,0,0,18,0,0] >;

D10.D10 in GAP, Magma, Sage, TeX

D_{10}.D_{10}
% in TeX

G:=Group("D10.D10");
// GroupNames label

G:=SmallGroup(400,148);
// by ID

G=gap.SmallGroup(400,148);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,1924,8645,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^10=1,d^2=a^4*b,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=a^5*c^-1>;
// generators/relations

׿
×
𝔽