metabelian, supersoluble, monomial
Aliases: C102⋊2C4, D10⋊2Dic5, D10.13D10, (C2×C10)⋊6F5, (D5×C10)⋊9C4, (C5×D5).6D4, C5⋊(C23.D5), (C2×C10)⋊1Dic5, C22⋊(D5.D5), C5⋊5(C22⋊F5), C10.41(C2×F5), D5.3(C5⋊D4), C52⋊5(C22⋊C4), C10.7(C2×Dic5), (C22×D5).2D5, (D5×C10).22C22, (D5×C2×C10).5C2, (C2×D5.D5)⋊2C2, C2.7(C2×D5.D5), (C5×C10).26(C2×C4), SmallGroup(400,148)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10.D10
G = < a,b,c,d | a10=b2=c10=1, d2=a4b, bab=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a6b, dcd-1=a5c-1 >
Subgroups: 424 in 73 conjugacy classes, 25 normal (19 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, C23, D5, D5, C10, C10, C22⋊C4, Dic5, F5, D10, D10, C2×C10, C2×C10, C52, C2×Dic5, C2×F5, C22×D5, C22×C10, C5×D5, C5×D5, C5×C10, C5×C10, C23.D5, C22⋊F5, D5.D5, D5×C10, D5×C10, C102, C2×D5.D5, D5×C2×C10, D10.D10
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, Dic5, F5, D10, C2×Dic5, C5⋊D4, C2×F5, C23.D5, C22⋊F5, D5.D5, C2×D5.D5, D10.D10
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 20)(8 19)(9 18)(10 17)(21 38)(22 37)(23 36)(24 35)(25 34)(26 33)(27 32)(28 31)(29 40)(30 39)
(1 9 7 5 3)(2 10 8 6 4)(11 13 15 17 19)(12 14 16 18 20)(21 30 29 28 27 26 25 24 23 22)(31 32 33 34 35 36 37 38 39 40)
(1 38 12 27)(2 31 11 24)(3 34 20 21)(4 37 19 28)(5 40 18 25)(6 33 17 22)(7 36 16 29)(8 39 15 26)(9 32 14 23)(10 35 13 30)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,20)(8,19)(9,18)(10,17)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,40)(30,39), (1,9,7,5,3)(2,10,8,6,4)(11,13,15,17,19)(12,14,16,18,20)(21,30,29,28,27,26,25,24,23,22)(31,32,33,34,35,36,37,38,39,40), (1,38,12,27)(2,31,11,24)(3,34,20,21)(4,37,19,28)(5,40,18,25)(6,33,17,22)(7,36,16,29)(8,39,15,26)(9,32,14,23)(10,35,13,30)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,20)(8,19)(9,18)(10,17)(21,38)(22,37)(23,36)(24,35)(25,34)(26,33)(27,32)(28,31)(29,40)(30,39), (1,9,7,5,3)(2,10,8,6,4)(11,13,15,17,19)(12,14,16,18,20)(21,30,29,28,27,26,25,24,23,22)(31,32,33,34,35,36,37,38,39,40), (1,38,12,27)(2,31,11,24)(3,34,20,21)(4,37,19,28)(5,40,18,25)(6,33,17,22)(7,36,16,29)(8,39,15,26)(9,32,14,23)(10,35,13,30) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,20),(8,19),(9,18),(10,17),(21,38),(22,37),(23,36),(24,35),(25,34),(26,33),(27,32),(28,31),(29,40),(30,39)], [(1,9,7,5,3),(2,10,8,6,4),(11,13,15,17,19),(12,14,16,18,20),(21,30,29,28,27,26,25,24,23,22),(31,32,33,34,35,36,37,38,39,40)], [(1,38,12,27),(2,31,11,24),(3,34,20,21),(4,37,19,28),(5,40,18,25),(6,33,17,22),(7,36,16,29),(8,39,15,26),(9,32,14,23),(10,35,13,30)]])
46 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 5C | ··· | 5G | 10A | ··· | 10F | 10G | ··· | 10U | 10V | ··· | 10AC |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | ··· | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 50 | 50 | 50 | 50 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 10 | ··· | 10 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | + | - | + | + | + | ||||||
image | C1 | C2 | C2 | C4 | C4 | D4 | D5 | Dic5 | D10 | Dic5 | C5⋊D4 | F5 | C2×F5 | C22⋊F5 | D5.D5 | C2×D5.D5 | D10.D10 |
kernel | D10.D10 | C2×D5.D5 | D5×C2×C10 | D5×C10 | C102 | C5×D5 | C22×D5 | D10 | D10 | C2×C10 | D5 | C2×C10 | C10 | C5 | C22 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 1 | 1 | 2 | 4 | 4 | 8 |
Matrix representation of D10.D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 | 0 |
0 | 0 | 4 | 37 | 0 | 0 |
0 | 0 | 31 | 0 | 16 | 0 |
0 | 0 | 14 | 0 | 0 | 18 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 37 | 14 | 0 | 0 |
0 | 0 | 37 | 4 | 0 | 0 |
0 | 0 | 18 | 37 | 0 | 18 |
0 | 0 | 35 | 37 | 16 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 24 | 0 | 18 | 0 |
0 | 0 | 24 | 0 | 0 | 18 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 23 | 0 | 19 | 0 |
0 | 0 | 0 | 0 | 23 | 18 |
0 | 0 | 24 | 16 | 18 | 0 |
0 | 0 | 24 | 0 | 18 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,10,4,31,14,0,0,0,37,0,0,0,0,0,0,16,0,0,0,0,0,0,18],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,37,37,18,35,0,0,14,4,37,37,0,0,0,0,0,16,0,0,0,0,18,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,16,0,24,24,0,0,0,16,0,0,0,0,0,0,18,0,0,0,0,0,0,18],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,23,0,24,24,0,0,0,0,16,0,0,0,19,23,18,18,0,0,0,18,0,0] >;
D10.D10 in GAP, Magma, Sage, TeX
D_{10}.D_{10}
% in TeX
G:=Group("D10.D10");
// GroupNames label
G:=SmallGroup(400,148);
// by ID
G=gap.SmallGroup(400,148);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,121,1924,8645,2897]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^10=1,d^2=a^4*b,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=a^5*c^-1>;
// generators/relations