direct product, metabelian, supersoluble, monomial
Aliases: C10×C5⋊D4, C102⋊7C22, C23⋊(C5×D5), C10⋊2(C5×D4), C5⋊3(D4×C10), (C5×C10)⋊6D4, (C2×C10)⋊6D10, C52⋊12(C2×D4), D10⋊3(C2×C10), (C2×C102)⋊2C2, C22⋊2(D5×C10), (C22×C10)⋊1D5, (C22×C10)⋊2C10, (C2×Dic5)⋊4C10, Dic5⋊2(C2×C10), (D5×C10)⋊9C22, (C22×D5)⋊3C10, (C10×Dic5)⋊10C2, (C5×C10).28C23, (C5×Dic5)⋊9C22, C10.49(C22×D5), C10.10(C22×C10), (D5×C2×C10)⋊6C2, C2.10(D5×C2×C10), (C2×C10)⋊3(C2×C10), SmallGroup(400,190)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10×C5⋊D4
G = < a,b,c,d | a10=b5=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 356 in 140 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C5, C2×C4, D4, C23, C23, D5, C10, C10, C10, C2×D4, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C52, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, C5×D5, C5×C10, C5×C10, C5×C10, C2×C5⋊D4, D4×C10, C5×Dic5, D5×C10, D5×C10, C102, C102, C102, C10×Dic5, C5×C5⋊D4, D5×C2×C10, C2×C102, C10×C5⋊D4
Quotients: C1, C2, C22, C5, D4, C23, D5, C10, C2×D4, D10, C2×C10, C5⋊D4, C5×D4, C22×D5, C22×C10, C5×D5, C2×C5⋊D4, D4×C10, D5×C10, C5×C5⋊D4, D5×C2×C10, C10×C5⋊D4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 3 5 7 9)(2 4 6 8 10)(11 19 17 15 13)(12 20 18 16 14)(21 23 25 27 29)(22 24 26 28 30)(31 39 37 35 33)(32 40 38 36 34)
(1 32 22 16)(2 33 23 17)(3 34 24 18)(4 35 25 19)(5 36 26 20)(6 37 27 11)(7 38 28 12)(8 39 29 13)(9 40 30 14)(10 31 21 15)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,3,5,7,9)(2,4,6,8,10)(11,19,17,15,13)(12,20,18,16,14)(21,23,25,27,29)(22,24,26,28,30)(31,39,37,35,33)(32,40,38,36,34), (1,32,22,16)(2,33,23,17)(3,34,24,18)(4,35,25,19)(5,36,26,20)(6,37,27,11)(7,38,28,12)(8,39,29,13)(9,40,30,14)(10,31,21,15), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,3,5,7,9)(2,4,6,8,10)(11,19,17,15,13)(12,20,18,16,14)(21,23,25,27,29)(22,24,26,28,30)(31,39,37,35,33)(32,40,38,36,34), (1,32,22,16)(2,33,23,17)(3,34,24,18)(4,35,25,19)(5,36,26,20)(6,37,27,11)(7,38,28,12)(8,39,29,13)(9,40,30,14)(10,31,21,15), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,3,5,7,9),(2,4,6,8,10),(11,19,17,15,13),(12,20,18,16,14),(21,23,25,27,29),(22,24,26,28,30),(31,39,37,35,33),(32,40,38,36,34)], [(1,32,22,16),(2,33,23,17),(3,34,24,18),(4,35,25,19),(5,36,26,20),(6,37,27,11),(7,38,28,12),(8,39,29,13),(9,40,30,14),(10,31,21,15)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)]])
130 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 5C | 5D | 5E | ··· | 5N | 10A | ··· | 10L | 10M | ··· | 10CL | 10CM | ··· | 10CT | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 10 | ··· | 10 | 10 | ··· | 10 |
130 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | D4 | D5 | D10 | C5⋊D4 | C5×D4 | C5×D5 | D5×C10 | C5×C5⋊D4 |
kernel | C10×C5⋊D4 | C10×Dic5 | C5×C5⋊D4 | D5×C2×C10 | C2×C102 | C2×C5⋊D4 | C2×Dic5 | C5⋊D4 | C22×D5 | C22×C10 | C5×C10 | C22×C10 | C2×C10 | C10 | C10 | C23 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 4 | 4 | 16 | 4 | 4 | 2 | 2 | 6 | 8 | 8 | 8 | 24 | 32 |
Matrix representation of C10×C5⋊D4 ►in GL4(𝔽41) generated by
23 | 0 | 0 | 0 |
0 | 23 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
37 | 0 | 0 | 0 |
0 | 10 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(41))| [23,0,0,0,0,23,0,0,0,0,40,0,0,0,0,40],[37,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,0,40,0,0,1,0],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;
C10×C5⋊D4 in GAP, Magma, Sage, TeX
C_{10}\times C_5\rtimes D_4
% in TeX
G:=Group("C10xC5:D4");
// GroupNames label
G:=SmallGroup(400,190);
// by ID
G=gap.SmallGroup(400,190);
# by ID
G:=PCGroup([6,-2,-2,-2,-5,-2,-5,794,11525]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^5=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations