Extensions 1→N→G→Q→1 with N=C2xC10 and Q=Dic5

Direct product G=NxQ with N=C2xC10 and Q=Dic5
dρLabelID
Dic5xC2xC1080Dic5xC2xC10400,189

Semidirect products G=N:Q with N=C2xC10 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2xC10):1Dic5 = D10.D10φ: Dic5/C5C4 ⊆ Aut C2xC10404(C2xC10):1Dic5400,148
(C2xC10):2Dic5 = C22xD5.D5φ: Dic5/C5C4 ⊆ Aut C2xC1080(C2xC10):2Dic5400,215
(C2xC10):3Dic5 = C5xC23.D5φ: Dic5/C10C2 ⊆ Aut C2xC1040(C2xC10):3Dic5400,91
(C2xC10):4Dic5 = C102:11C4φ: Dic5/C10C2 ⊆ Aut C2xC10200(C2xC10):4Dic5400,107
(C2xC10):5Dic5 = C22xC52:6C4φ: Dic5/C10C2 ⊆ Aut C2xC10400(C2xC10):5Dic5400,199

Non-split extensions G=N.Q with N=C2xC10 and Q=Dic5
extensionφ:Q→Aut NdρLabelID
(C2xC10).1Dic5 = C2xC52:3C8φ: Dic5/C5C4 ⊆ Aut C2xC1080(C2xC10).1Dic5400,146
(C2xC10).2Dic5 = C102.C4φ: Dic5/C5C4 ⊆ Aut C2xC10404(C2xC10).2Dic5400,147
(C2xC10).3Dic5 = C5xC4.Dic5φ: Dic5/C10C2 ⊆ Aut C2xC10402(C2xC10).3Dic5400,82
(C2xC10).4Dic5 = C2xC25:2C8φ: Dic5/C10C2 ⊆ Aut C2xC10400(C2xC10).4Dic5400,9
(C2xC10).5Dic5 = C4.Dic25φ: Dic5/C10C2 ⊆ Aut C2xC102002(C2xC10).5Dic5400,10
(C2xC10).6Dic5 = C23.D25φ: Dic5/C10C2 ⊆ Aut C2xC10200(C2xC10).6Dic5400,19
(C2xC10).7Dic5 = C22xDic25φ: Dic5/C10C2 ⊆ Aut C2xC10400(C2xC10).7Dic5400,43
(C2xC10).8Dic5 = C2xC52:7C8φ: Dic5/C10C2 ⊆ Aut C2xC10400(C2xC10).8Dic5400,97
(C2xC10).9Dic5 = C20.59D10φ: Dic5/C10C2 ⊆ Aut C2xC10200(C2xC10).9Dic5400,98
(C2xC10).10Dic5 = C10xC5:2C8central extension (φ=1)80(C2xC10).10Dic5400,81

׿
x
:
Z
F
o
wr
Q
<