direct product, non-abelian, soluble
Aliases: C17×SL2(𝔽3), Q8⋊C51, C34.A4, (Q8×C17)⋊C3, C2.(A4×C17), SmallGroup(408,14)
Series: Derived ►Chief ►Lower central ►Upper central
| Q8 — C17×SL2(𝔽3) |
Generators and relations for C17×SL2(𝔽3)
G = < a,b,c,d | a17=b4=d3=1, c2=b2, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=c, dcd-1=bc >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 39 53 101)(2 40 54 102)(3 41 55 86)(4 42 56 87)(5 43 57 88)(6 44 58 89)(7 45 59 90)(8 46 60 91)(9 47 61 92)(10 48 62 93)(11 49 63 94)(12 50 64 95)(13 51 65 96)(14 35 66 97)(15 36 67 98)(16 37 68 99)(17 38 52 100)(18 127 76 115)(19 128 77 116)(20 129 78 117)(21 130 79 118)(22 131 80 119)(23 132 81 103)(24 133 82 104)(25 134 83 105)(26 135 84 106)(27 136 85 107)(28 120 69 108)(29 121 70 109)(30 122 71 110)(31 123 72 111)(32 124 73 112)(33 125 74 113)(34 126 75 114)
(1 116 53 128)(2 117 54 129)(3 118 55 130)(4 119 56 131)(5 103 57 132)(6 104 58 133)(7 105 59 134)(8 106 60 135)(9 107 61 136)(10 108 62 120)(11 109 63 121)(12 110 64 122)(13 111 65 123)(14 112 66 124)(15 113 67 125)(16 114 68 126)(17 115 52 127)(18 38 76 100)(19 39 77 101)(20 40 78 102)(21 41 79 86)(22 42 80 87)(23 43 81 88)(24 44 82 89)(25 45 83 90)(26 46 84 91)(27 47 85 92)(28 48 69 93)(29 49 70 94)(30 50 71 95)(31 51 72 96)(32 35 73 97)(33 36 74 98)(34 37 75 99)
(18 127 100)(19 128 101)(20 129 102)(21 130 86)(22 131 87)(23 132 88)(24 133 89)(25 134 90)(26 135 91)(27 136 92)(28 120 93)(29 121 94)(30 122 95)(31 123 96)(32 124 97)(33 125 98)(34 126 99)(35 73 112)(36 74 113)(37 75 114)(38 76 115)(39 77 116)(40 78 117)(41 79 118)(42 80 119)(43 81 103)(44 82 104)(45 83 105)(46 84 106)(47 85 107)(48 69 108)(49 70 109)(50 71 110)(51 72 111)
G:=sub<Sym(136)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,39,53,101)(2,40,54,102)(3,41,55,86)(4,42,56,87)(5,43,57,88)(6,44,58,89)(7,45,59,90)(8,46,60,91)(9,47,61,92)(10,48,62,93)(11,49,63,94)(12,50,64,95)(13,51,65,96)(14,35,66,97)(15,36,67,98)(16,37,68,99)(17,38,52,100)(18,127,76,115)(19,128,77,116)(20,129,78,117)(21,130,79,118)(22,131,80,119)(23,132,81,103)(24,133,82,104)(25,134,83,105)(26,135,84,106)(27,136,85,107)(28,120,69,108)(29,121,70,109)(30,122,71,110)(31,123,72,111)(32,124,73,112)(33,125,74,113)(34,126,75,114), (1,116,53,128)(2,117,54,129)(3,118,55,130)(4,119,56,131)(5,103,57,132)(6,104,58,133)(7,105,59,134)(8,106,60,135)(9,107,61,136)(10,108,62,120)(11,109,63,121)(12,110,64,122)(13,111,65,123)(14,112,66,124)(15,113,67,125)(16,114,68,126)(17,115,52,127)(18,38,76,100)(19,39,77,101)(20,40,78,102)(21,41,79,86)(22,42,80,87)(23,43,81,88)(24,44,82,89)(25,45,83,90)(26,46,84,91)(27,47,85,92)(28,48,69,93)(29,49,70,94)(30,50,71,95)(31,51,72,96)(32,35,73,97)(33,36,74,98)(34,37,75,99), (18,127,100)(19,128,101)(20,129,102)(21,130,86)(22,131,87)(23,132,88)(24,133,89)(25,134,90)(26,135,91)(27,136,92)(28,120,93)(29,121,94)(30,122,95)(31,123,96)(32,124,97)(33,125,98)(34,126,99)(35,73,112)(36,74,113)(37,75,114)(38,76,115)(39,77,116)(40,78,117)(41,79,118)(42,80,119)(43,81,103)(44,82,104)(45,83,105)(46,84,106)(47,85,107)(48,69,108)(49,70,109)(50,71,110)(51,72,111)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,39,53,101)(2,40,54,102)(3,41,55,86)(4,42,56,87)(5,43,57,88)(6,44,58,89)(7,45,59,90)(8,46,60,91)(9,47,61,92)(10,48,62,93)(11,49,63,94)(12,50,64,95)(13,51,65,96)(14,35,66,97)(15,36,67,98)(16,37,68,99)(17,38,52,100)(18,127,76,115)(19,128,77,116)(20,129,78,117)(21,130,79,118)(22,131,80,119)(23,132,81,103)(24,133,82,104)(25,134,83,105)(26,135,84,106)(27,136,85,107)(28,120,69,108)(29,121,70,109)(30,122,71,110)(31,123,72,111)(32,124,73,112)(33,125,74,113)(34,126,75,114), (1,116,53,128)(2,117,54,129)(3,118,55,130)(4,119,56,131)(5,103,57,132)(6,104,58,133)(7,105,59,134)(8,106,60,135)(9,107,61,136)(10,108,62,120)(11,109,63,121)(12,110,64,122)(13,111,65,123)(14,112,66,124)(15,113,67,125)(16,114,68,126)(17,115,52,127)(18,38,76,100)(19,39,77,101)(20,40,78,102)(21,41,79,86)(22,42,80,87)(23,43,81,88)(24,44,82,89)(25,45,83,90)(26,46,84,91)(27,47,85,92)(28,48,69,93)(29,49,70,94)(30,50,71,95)(31,51,72,96)(32,35,73,97)(33,36,74,98)(34,37,75,99), (18,127,100)(19,128,101)(20,129,102)(21,130,86)(22,131,87)(23,132,88)(24,133,89)(25,134,90)(26,135,91)(27,136,92)(28,120,93)(29,121,94)(30,122,95)(31,123,96)(32,124,97)(33,125,98)(34,126,99)(35,73,112)(36,74,113)(37,75,114)(38,76,115)(39,77,116)(40,78,117)(41,79,118)(42,80,119)(43,81,103)(44,82,104)(45,83,105)(46,84,106)(47,85,107)(48,69,108)(49,70,109)(50,71,110)(51,72,111) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,39,53,101),(2,40,54,102),(3,41,55,86),(4,42,56,87),(5,43,57,88),(6,44,58,89),(7,45,59,90),(8,46,60,91),(9,47,61,92),(10,48,62,93),(11,49,63,94),(12,50,64,95),(13,51,65,96),(14,35,66,97),(15,36,67,98),(16,37,68,99),(17,38,52,100),(18,127,76,115),(19,128,77,116),(20,129,78,117),(21,130,79,118),(22,131,80,119),(23,132,81,103),(24,133,82,104),(25,134,83,105),(26,135,84,106),(27,136,85,107),(28,120,69,108),(29,121,70,109),(30,122,71,110),(31,123,72,111),(32,124,73,112),(33,125,74,113),(34,126,75,114)], [(1,116,53,128),(2,117,54,129),(3,118,55,130),(4,119,56,131),(5,103,57,132),(6,104,58,133),(7,105,59,134),(8,106,60,135),(9,107,61,136),(10,108,62,120),(11,109,63,121),(12,110,64,122),(13,111,65,123),(14,112,66,124),(15,113,67,125),(16,114,68,126),(17,115,52,127),(18,38,76,100),(19,39,77,101),(20,40,78,102),(21,41,79,86),(22,42,80,87),(23,43,81,88),(24,44,82,89),(25,45,83,90),(26,46,84,91),(27,47,85,92),(28,48,69,93),(29,49,70,94),(30,50,71,95),(31,51,72,96),(32,35,73,97),(33,36,74,98),(34,37,75,99)], [(18,127,100),(19,128,101),(20,129,102),(21,130,86),(22,131,87),(23,132,88),(24,133,89),(25,134,90),(26,135,91),(27,136,92),(28,120,93),(29,121,94),(30,122,95),(31,123,96),(32,124,97),(33,125,98),(34,126,99),(35,73,112),(36,74,113),(37,75,114),(38,76,115),(39,77,116),(40,78,117),(41,79,118),(42,80,119),(43,81,103),(44,82,104),(45,83,105),(46,84,106),(47,85,107),(48,69,108),(49,70,109),(50,71,110),(51,72,111)]])
119 conjugacy classes
| class | 1 | 2 | 3A | 3B | 4 | 6A | 6B | 17A | ··· | 17P | 34A | ··· | 34P | 51A | ··· | 51AF | 68A | ··· | 68P | 102A | ··· | 102AF |
| order | 1 | 2 | 3 | 3 | 4 | 6 | 6 | 17 | ··· | 17 | 34 | ··· | 34 | 51 | ··· | 51 | 68 | ··· | 68 | 102 | ··· | 102 |
| size | 1 | 1 | 4 | 4 | 6 | 4 | 4 | 1 | ··· | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 6 | ··· | 6 | 4 | ··· | 4 |
119 irreducible representations
| dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| type | + | - | + | ||||||
| image | C1 | C3 | C17 | C51 | SL2(𝔽3) | SL2(𝔽3) | C17×SL2(𝔽3) | A4 | A4×C17 |
| kernel | C17×SL2(𝔽3) | Q8×C17 | SL2(𝔽3) | Q8 | C17 | C17 | C1 | C34 | C2 |
| # reps | 1 | 2 | 16 | 32 | 1 | 2 | 48 | 1 | 16 |
Matrix representation of C17×SL2(𝔽3) ►in GL2(𝔽409) generated by
| 36 | 0 |
| 0 | 36 |
| 53 | 355 |
| 355 | 356 |
| 0 | 408 |
| 1 | 0 |
| 1 | 53 |
| 0 | 355 |
G:=sub<GL(2,GF(409))| [36,0,0,36],[53,355,355,356],[0,1,408,0],[1,0,53,355] >;
C17×SL2(𝔽3) in GAP, Magma, Sage, TeX
C_{17}\times {\rm SL}_2({\mathbb F}_3) % in TeX
G:=Group("C17xSL(2,3)"); // GroupNames label
G:=SmallGroup(408,14);
// by ID
G=gap.SmallGroup(408,14);
# by ID
G:=PCGroup([5,-3,-17,-2,2,-2,1532,72,3063,133,58]);
// Polycyclic
G:=Group<a,b,c,d|a^17=b^4=d^3=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=c,d*c*d^-1=b*c>;
// generators/relations
Export