Extensions 1→N→G→Q→1 with N=C13 and Q=C4×D4

Direct product G=N×Q with N=C13 and Q=C4×D4
dρLabelID
D4×C52208D4xC52416,179

Semidirect products G=N:Q with N=C13 and Q=C4×D4
extensionφ:Q→Aut NdρLabelID
C13⋊(C4×D4) = D4×C13⋊C4φ: C4×D4/D4C4 ⊆ Aut C13528+C13:(C4xD4)416,206
C132(C4×D4) = C4×D52φ: C4×D4/C42C2 ⊆ Aut C13208C13:2(C4xD4)416,94
C133(C4×D4) = Dic134D4φ: C4×D4/C22⋊C4C2 ⊆ Aut C13208C13:3(C4xD4)416,102
C134(C4×D4) = D528C4φ: C4×D4/C4⋊C4C2 ⊆ Aut C13208C13:4(C4xD4)416,114
C135(C4×D4) = C4×C13⋊D4φ: C4×D4/C22×C4C2 ⊆ Aut C13208C13:5(C4xD4)416,149
C136(C4×D4) = D4×Dic13φ: C4×D4/C2×D4C2 ⊆ Aut C13208C13:6(C4xD4)416,155


׿
×
𝔽