Copied to
clipboard

G = C4xD4order 32 = 25

Direct product of C4 and D4

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4xD4, C42:4C2, C22.7C23, C23.8C22, C4:C4:7C2, C4:1(C2xC4), C4o2(C4:C4), C2.3(C2xD4), C22:C4:6C2, (C22xC4):2C2, C22:1(C2xC4), (C2xD4).7C2, C4o2(C22:C4), C2.2(C4oD4), C2.4(C22xC4), (C2xC4).11C22, (C2xC4)o(C2xD4), (C2xC4)o(C4:C4), (C2xC4)o(C22:C4), 2-Sylow(CO(3,5)), SmallGroup(32,25)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C4xD4
C1C2C22C2xC4C22xC4 — C4xD4
C1C2 — C4xD4
C1C2xC4 — C4xD4
C1C22 — C4xD4

Generators and relations for C4xD4
 G = < a,b,c | a4=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 62 in 47 conjugacy classes, 32 normal (12 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22xC4, C2xD4, C4oD4, C4xD4
2C2
2C2
2C2
2C2
2C4
2C22
2C22
2C22
2C4
2C4
2C22
2C2xC4
2C2xC4
2C2xC4
2C2xC4

Character table of C4xD4

 class 12A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L
 size 11112222111122222222
ρ111111111111111111111    trivial
ρ2111111-1-111111-1-1-11-1-1-1    linear of order 2
ρ31111-1-1111111-11-11-1-1-1-1    linear of order 2
ρ41111-1-1-1-11111-1-11-1-1111    linear of order 2
ρ51111-1-111-1-1-1-11-11-11-11-1    linear of order 2
ρ61111-1-1-1-1-1-1-1-111-1111-11    linear of order 2
ρ711111111-1-1-1-1-1-1-1-1-11-11    linear of order 2
ρ8111111-1-1-1-1-1-1-1111-1-11-1    linear of order 2
ρ91-11-1-111-1-ii-ii-ii-i-ii1i-1    linear of order 4
ρ101-11-1-11-11-ii-ii-i-iiii-1-i1    linear of order 4
ρ111-11-11-11-1i-ii-i-i-i-iii-1i1    linear of order 4
ρ121-11-11-1-11i-ii-i-iii-ii1-i-1    linear of order 4
ρ131-11-11-11-1-ii-iiiii-i-i-1-i1    linear of order 4
ρ141-11-11-1-11-ii-iii-i-ii-i1i-1    linear of order 4
ρ151-11-1-111-1i-ii-ii-iii-i1-i-1    linear of order 4
ρ161-11-1-11-11i-ii-iii-i-i-i-1i1    linear of order 4
ρ172-2-220000-222-200000000    orthogonal lifted from D4
ρ182-2-2200002-2-2200000000    orthogonal lifted from D4
ρ1922-2-20000-2i-2i2i2i00000000    complex lifted from C4oD4
ρ2022-2-200002i2i-2i-2i00000000    complex lifted from C4oD4

Permutation representations of C4xD4
On 16 points - transitive group 16T19
Generators in S16
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
(1 14 11 7)(2 15 12 8)(3 16 9 5)(4 13 10 6)
(5 16)(6 13)(7 14)(8 15)

G:=sub<Sym(16)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,14,11,7)(2,15,12,8)(3,16,9,5)(4,13,10,6), (5,16)(6,13)(7,14)(8,15)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16), (1,14,11,7)(2,15,12,8)(3,16,9,5)(4,13,10,6), (5,16)(6,13)(7,14)(8,15) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)], [(1,14,11,7),(2,15,12,8),(3,16,9,5),(4,13,10,6)], [(5,16),(6,13),(7,14),(8,15)]])

G:=TransitiveGroup(16,19);

C4xD4 is a maximal subgroup of
D4:C8  C8:9D4  C8:6D4  SD16:C4  C4:D8  D4.D4  D4.2D4  D4:Q8  D4:2Q8  D4.Q8  C22.19C24  C23.36C23  C22.26C24  C22.32C24  C22.33C24  C22.34C24  C22.36C24  D4:5D4  D4:6D4  Q8:5D4  Q8:6D4  C22.45C24  C22.46C24  C22.47C24  D4:3Q8  C22.49C24  C22.50C24  C22.53C24
 D4p:C4: D8:C4  Dic3:5D4  D20:8C4  D28:C4  D44:C4  D52:8C4 ...
 D2p:(C2xC4): C22.11C24  C23.33C23  Dic3:4D4  Dic5:4D4  Dic7:4D4  Dic11:4D4  Dic13:4D4 ...
C4xD4 is a maximal quotient of
C23.63C23  C24.C22  C23.65C23  C24.3C22  C8:9D4  C8:6D4  SD16:C4  Q16:C4
 D4p:C4: D8:C4  C8oD8  C8.26D4  Dic3:5D4  D20:8C4  D28:C4  D44:C4  D52:8C4 ...
 C23.D2p: C23.8Q8  C23.23D4  Dic3:4D4  Dic5:4D4  Dic7:4D4  Dic11:4D4  Dic13:4D4 ...

Matrix representation of C4xD4 in GL3(F5) generated by

200
040
004
,
100
004
010
,
100
010
004
G:=sub<GL(3,GF(5))| [2,0,0,0,4,0,0,0,4],[1,0,0,0,0,1,0,4,0],[1,0,0,0,1,0,0,0,4] >;

C4xD4 in GAP, Magma, Sage, TeX

C_4\times D_4
% in TeX

G:=Group("C4xD4");
// GroupNames label

G:=SmallGroup(32,25);
// by ID

G=gap.SmallGroup(32,25);
# by ID

G:=PCGroup([5,-2,2,2,-2,2,80,101,72]);
// Polycyclic

G:=Group<a,b,c|a^4=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C4xD4 in TeX
Character table of C4xD4 in TeX

׿
x
:
Z
F
o
wr
Q
<