Extensions 1→N→G→Q→1 with N=C3×C9 and Q=C15

Direct product G=N×Q with N=C3×C9 and Q=C15
dρLabelID
C32×C45405C3^2xC45405,11

Semidirect products G=N:Q with N=C3×C9 and Q=C15
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1C15 = C5×C32⋊C9φ: C15/C5C3 ⊆ Aut C3×C9135(C3xC9):1C15405,3
(C3×C9)⋊2C15 = C5×He3.C3φ: C15/C5C3 ⊆ Aut C3×C91353(C3xC9):2C15405,8
(C3×C9)⋊3C15 = C5×He3⋊C3φ: C15/C5C3 ⊆ Aut C3×C91353(C3xC9):3C15405,9
(C3×C9)⋊4C15 = C15×3- 1+2φ: C15/C5C3 ⊆ Aut C3×C9135(C3xC9):4C15405,13
(C3×C9)⋊5C15 = C5×C9○He3φ: C15/C5C3 ⊆ Aut C3×C91353(C3xC9):5C15405,14

Non-split extensions G=N.Q with N=C3×C9 and Q=C15
extensionφ:Q→Aut NdρLabelID
(C3×C9).1C15 = C5×C9⋊C9φ: C15/C5C3 ⊆ Aut C3×C9405(C3xC9).1C15405,4
(C3×C9).2C15 = C5×C3.He3φ: C15/C5C3 ⊆ Aut C3×C91353(C3xC9).2C15405,10
(C3×C9).3C15 = C5×C27⋊C3φ: C15/C5C3 ⊆ Aut C3×C91353(C3xC9).3C15405,6

׿
×
𝔽