direct product, metabelian, nilpotent (class 3), monomial, 3-elementary
Aliases: C5×He3.C3, He3.C15, C15.3He3, 3- 1+2⋊2C15, (C3×C45)⋊2C3, (C3×C9)⋊2C15, (C5×He3).C3, C3.3(C5×He3), C32.2(C3×C15), (C3×C15).2C32, (C5×3- 1+2)⋊2C3, SmallGroup(405,8)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×He3.C3
G = < a,b,c,d,e | a5=b3=c3=d3=1, e3=c, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=bc-1, be=eb, cd=dc, ce=ec, ede-1=bc-1d >
(1 65 43 26 48)(2 66 44 27 49)(3 67 45 19 50)(4 68 37 20 51)(5 69 38 21 52)(6 70 39 22 53)(7 71 40 23 54)(8 72 41 24 46)(9 64 42 25 47)(10 124 36 131 102)(11 125 28 132 103)(12 126 29 133 104)(13 118 30 134 105)(14 119 31 135 106)(15 120 32 127 107)(16 121 33 128 108)(17 122 34 129 100)(18 123 35 130 101)(55 94 73 109 88)(56 95 74 110 89)(57 96 75 111 90)(58 97 76 112 82)(59 98 77 113 83)(60 99 78 114 84)(61 91 79 115 85)(62 92 80 116 86)(63 93 81 117 87)
(10 16 13)(11 17 14)(12 18 15)(28 34 31)(29 35 32)(30 36 33)(55 58 61)(56 59 62)(57 60 63)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 106 103)(101 107 104)(102 108 105)(109 112 115)(110 113 116)(111 114 117)(118 124 121)(119 125 122)(120 126 123)(127 133 130)(128 134 131)(129 135 132)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)
(1 123 73)(2 121 74)(3 119 75)(4 126 76)(5 124 77)(6 122 78)(7 120 79)(8 118 80)(9 125 81)(10 98 52)(11 93 47)(12 97 51)(13 92 46)(14 96 50)(15 91 54)(16 95 49)(17 99 53)(18 94 48)(19 106 57)(20 104 58)(21 102 59)(22 100 60)(23 107 61)(24 105 62)(25 103 63)(26 101 55)(27 108 56)(28 117 64)(29 112 68)(30 116 72)(31 111 67)(32 115 71)(33 110 66)(34 114 70)(35 109 65)(36 113 69)(37 133 82)(38 131 83)(39 129 84)(40 127 85)(41 134 86)(42 132 87)(43 130 88)(44 128 89)(45 135 90)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)
G:=sub<Sym(135)| (1,65,43,26,48)(2,66,44,27,49)(3,67,45,19,50)(4,68,37,20,51)(5,69,38,21,52)(6,70,39,22,53)(7,71,40,23,54)(8,72,41,24,46)(9,64,42,25,47)(10,124,36,131,102)(11,125,28,132,103)(12,126,29,133,104)(13,118,30,134,105)(14,119,31,135,106)(15,120,32,127,107)(16,121,33,128,108)(17,122,34,129,100)(18,123,35,130,101)(55,94,73,109,88)(56,95,74,110,89)(57,96,75,111,90)(58,97,76,112,82)(59,98,77,113,83)(60,99,78,114,84)(61,91,79,115,85)(62,92,80,116,86)(63,93,81,117,87), (10,16,13)(11,17,14)(12,18,15)(28,34,31)(29,35,32)(30,36,33)(55,58,61)(56,59,62)(57,60,63)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,106,103)(101,107,104)(102,108,105)(109,112,115)(110,113,116)(111,114,117)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135), (1,123,73)(2,121,74)(3,119,75)(4,126,76)(5,124,77)(6,122,78)(7,120,79)(8,118,80)(9,125,81)(10,98,52)(11,93,47)(12,97,51)(13,92,46)(14,96,50)(15,91,54)(16,95,49)(17,99,53)(18,94,48)(19,106,57)(20,104,58)(21,102,59)(22,100,60)(23,107,61)(24,105,62)(25,103,63)(26,101,55)(27,108,56)(28,117,64)(29,112,68)(30,116,72)(31,111,67)(32,115,71)(33,110,66)(34,114,70)(35,109,65)(36,113,69)(37,133,82)(38,131,83)(39,129,84)(40,127,85)(41,134,86)(42,132,87)(43,130,88)(44,128,89)(45,135,90), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)>;
G:=Group( (1,65,43,26,48)(2,66,44,27,49)(3,67,45,19,50)(4,68,37,20,51)(5,69,38,21,52)(6,70,39,22,53)(7,71,40,23,54)(8,72,41,24,46)(9,64,42,25,47)(10,124,36,131,102)(11,125,28,132,103)(12,126,29,133,104)(13,118,30,134,105)(14,119,31,135,106)(15,120,32,127,107)(16,121,33,128,108)(17,122,34,129,100)(18,123,35,130,101)(55,94,73,109,88)(56,95,74,110,89)(57,96,75,111,90)(58,97,76,112,82)(59,98,77,113,83)(60,99,78,114,84)(61,91,79,115,85)(62,92,80,116,86)(63,93,81,117,87), (10,16,13)(11,17,14)(12,18,15)(28,34,31)(29,35,32)(30,36,33)(55,58,61)(56,59,62)(57,60,63)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,106,103)(101,107,104)(102,108,105)(109,112,115)(110,113,116)(111,114,117)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135), (1,123,73)(2,121,74)(3,119,75)(4,126,76)(5,124,77)(6,122,78)(7,120,79)(8,118,80)(9,125,81)(10,98,52)(11,93,47)(12,97,51)(13,92,46)(14,96,50)(15,91,54)(16,95,49)(17,99,53)(18,94,48)(19,106,57)(20,104,58)(21,102,59)(22,100,60)(23,107,61)(24,105,62)(25,103,63)(26,101,55)(27,108,56)(28,117,64)(29,112,68)(30,116,72)(31,111,67)(32,115,71)(33,110,66)(34,114,70)(35,109,65)(36,113,69)(37,133,82)(38,131,83)(39,129,84)(40,127,85)(41,134,86)(42,132,87)(43,130,88)(44,128,89)(45,135,90), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135) );
G=PermutationGroup([[(1,65,43,26,48),(2,66,44,27,49),(3,67,45,19,50),(4,68,37,20,51),(5,69,38,21,52),(6,70,39,22,53),(7,71,40,23,54),(8,72,41,24,46),(9,64,42,25,47),(10,124,36,131,102),(11,125,28,132,103),(12,126,29,133,104),(13,118,30,134,105),(14,119,31,135,106),(15,120,32,127,107),(16,121,33,128,108),(17,122,34,129,100),(18,123,35,130,101),(55,94,73,109,88),(56,95,74,110,89),(57,96,75,111,90),(58,97,76,112,82),(59,98,77,113,83),(60,99,78,114,84),(61,91,79,115,85),(62,92,80,116,86),(63,93,81,117,87)], [(10,16,13),(11,17,14),(12,18,15),(28,34,31),(29,35,32),(30,36,33),(55,58,61),(56,59,62),(57,60,63),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,106,103),(101,107,104),(102,108,105),(109,112,115),(110,113,116),(111,114,117),(118,124,121),(119,125,122),(120,126,123),(127,133,130),(128,134,131),(129,135,132)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135)], [(1,123,73),(2,121,74),(3,119,75),(4,126,76),(5,124,77),(6,122,78),(7,120,79),(8,118,80),(9,125,81),(10,98,52),(11,93,47),(12,97,51),(13,92,46),(14,96,50),(15,91,54),(16,95,49),(17,99,53),(18,94,48),(19,106,57),(20,104,58),(21,102,59),(22,100,60),(23,107,61),(24,105,62),(25,103,63),(26,101,55),(27,108,56),(28,117,64),(29,112,68),(30,116,72),(31,111,67),(32,115,71),(33,110,66),(34,114,70),(35,109,65),(36,113,69),(37,133,82),(38,131,83),(39,129,84),(40,127,85),(41,134,86),(42,132,87),(43,130,88),(44,128,89),(45,135,90)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135)]])
85 conjugacy classes
| class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 5A | 5B | 5C | 5D | 9A | ··· | 9F | 9G | 9H | 9I | 9J | 15A | ··· | 15H | 15I | ··· | 15P | 15Q | ··· | 15X | 45A | ··· | 45X | 45Y | ··· | 45AN |
| order | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 5 | 5 | 5 | 5 | 9 | ··· | 9 | 9 | 9 | 9 | 9 | 15 | ··· | 15 | 15 | ··· | 15 | 15 | ··· | 15 | 45 | ··· | 45 | 45 | ··· | 45 |
| size | 1 | 1 | 1 | 3 | 3 | 9 | 9 | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 9 | 9 | 9 | 9 | 1 | ··· | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
85 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
| type | + | |||||||||||
| image | C1 | C3 | C3 | C3 | C5 | C15 | C15 | C15 | He3 | He3.C3 | C5×He3 | C5×He3.C3 |
| kernel | C5×He3.C3 | C3×C45 | C5×He3 | C5×3- 1+2 | He3.C3 | C3×C9 | He3 | 3- 1+2 | C15 | C5 | C3 | C1 |
| # reps | 1 | 2 | 2 | 4 | 4 | 8 | 8 | 16 | 2 | 6 | 8 | 24 |
Matrix representation of C5×He3.C3 ►in GL3(𝔽181) generated by
| 59 | 0 | 0 |
| 0 | 59 | 0 |
| 0 | 0 | 59 |
| 1 | 0 | 0 |
| 0 | 132 | 0 |
| 0 | 0 | 48 |
| 132 | 0 | 0 |
| 0 | 132 | 0 |
| 0 | 0 | 132 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |
| 1 | 0 | 0 |
| 62 | 0 | 0 |
| 0 | 62 | 0 |
| 0 | 0 | 39 |
G:=sub<GL(3,GF(181))| [59,0,0,0,59,0,0,0,59],[1,0,0,0,132,0,0,0,48],[132,0,0,0,132,0,0,0,132],[0,0,1,1,0,0,0,1,0],[62,0,0,0,62,0,0,0,39] >;
C5×He3.C3 in GAP, Magma, Sage, TeX
C_5\times {\rm He}_3.C_3 % in TeX
G:=Group("C5xHe3.C3"); // GroupNames label
G:=SmallGroup(405,8);
// by ID
G=gap.SmallGroup(405,8);
# by ID
G:=PCGroup([5,-3,-3,-5,-3,-3,481,456,3603]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^3=c^3=d^3=1,e^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*c^-1*d>;
// generators/relations
Export