Extensions 1→N→G→Q→1 with N=C2×D52 and Q=C2

Direct product G=N×Q with N=C2×D52 and Q=C2
dρLabelID
C22×D52208C2^2xD52416,214

Semidirect products G=N:Q with N=C2×D52 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D52)⋊1C2 = C4⋊D52φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):1C2416,95
(C2×D52)⋊2C2 = C22⋊D52φ: C2/C1C2 ⊆ Out C2×D52104(C2xD52):2C2416,103
(C2×D52)⋊3C2 = D26⋊D4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):3C2416,105
(C2×D52)⋊4C2 = C42D52φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):4C2416,116
(C2×D52)⋊5C2 = C2×D104φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):5C2416,124
(C2×D52)⋊6C2 = C527D4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):6C2416,151
(C2×D52)⋊7C2 = C8⋊D26φ: C2/C1C2 ⊆ Out C2×D521044+(C2xD52):7C2416,129
(C2×D52)⋊8C2 = C2×D4⋊D13φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):8C2416,152
(C2×D52)⋊9C2 = C52⋊D4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):9C2416,161
(C2×D52)⋊10C2 = D4⋊D26φ: C2/C1C2 ⊆ Out C2×D521044+(C2xD52):10C2416,170
(C2×D52)⋊11C2 = C2×D4×D13φ: C2/C1C2 ⊆ Out C2×D52104(C2xD52):11C2416,216
(C2×D52)⋊12C2 = C2×D52⋊C2φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52):12C2416,220
(C2×D52)⋊13C2 = D48D26φ: C2/C1C2 ⊆ Out C2×D521044+(C2xD52):13C2416,223
(C2×D52)⋊14C2 = C2×D525C2φ: trivial image208(C2xD52):14C2416,215

Non-split extensions G=N.Q with N=C2×D52 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D52).1C2 = D525C4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).1C2416,28
(C2×D52).2C2 = D26.D4φ: C2/C1C2 ⊆ Out C2×D521044+(C2xD52).2C2416,74
(C2×D52).3C2 = C4.D52φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).3C2416,96
(C2×D52).4C2 = D26.13D4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).4C2416,115
(C2×D52).5C2 = C2×C104⋊C2φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).5C2416,123
(C2×D52).6C2 = D526C4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).6C2416,16
(C2×D52).7C2 = C52.46D4φ: C2/C1C2 ⊆ Out C2×D521044+(C2xD52).7C2416,30
(C2×D52).8C2 = D528C4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).8C2416,114
(C2×D52).9C2 = C2×Q8⋊D13φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).9C2416,162
(C2×D52).10C2 = C52.23D4φ: C2/C1C2 ⊆ Out C2×D52208(C2xD52).10C2416,168
(C2×D52).11C2 = C4×D52φ: trivial image208(C2xD52).11C2416,94

׿
×
𝔽