Copied to
clipboard

G = C52.46D4order 416 = 25·13

3rd non-split extension by C52 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C52.46D4, C4.11D52, M4(2)⋊3D13, (C2×C4).1D26, (C2×D52).7C2, C52.4C42C2, C132(C4.D4), C22.4(C4×D13), C4.21(C13⋊D4), (C13×M4(2))⋊7C2, (C2×C52).13C22, (C22×D13).1C4, C2.9(D26⋊C4), C26.19(C22⋊C4), (C2×C26).22(C2×C4), SmallGroup(416,30)

Series: Derived Chief Lower central Upper central

C1C2×C26 — C52.46D4
C1C13C26C52C2×C52C2×D52 — C52.46D4
C13C26C2×C26 — C52.46D4
C1C2C2×C4M4(2)

Generators and relations for C52.46D4
 G = < a,b,c,d | a8=b2=c13=d2=1, bab=a5, ac=ca, dad=ab, bc=cb, bd=db, dcd=c-1 >

2C2
52C2
52C2
26C22
26C22
52C22
52C22
2C26
4D13
4D13
2C8
13C23
13C23
26C8
26D4
26D4
2D26
2D26
4D26
4D26
13M4(2)
13C2×D4
2C132C8
2C104
2D52
2D52
13C4.D4

Smallest permutation representation of C52.46D4
On 104 points
Generators in S104
(1 88 32 72 21 92 50 63)(2 89 33 73 22 93 51 64)(3 90 34 74 23 94 52 65)(4 91 35 75 24 95 40 53)(5 79 36 76 25 96 41 54)(6 80 37 77 26 97 42 55)(7 81 38 78 14 98 43 56)(8 82 39 66 15 99 44 57)(9 83 27 67 16 100 45 58)(10 84 28 68 17 101 46 59)(11 85 29 69 18 102 47 60)(12 86 30 70 19 103 48 61)(13 87 31 71 20 104 49 62)
(53 75)(54 76)(55 77)(56 78)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)(64 73)(65 74)(79 96)(80 97)(81 98)(82 99)(83 100)(84 101)(85 102)(86 103)(87 104)(88 92)(89 93)(90 94)(91 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(15 26)(16 25)(17 24)(18 23)(19 22)(20 21)(27 41)(28 40)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(53 59)(54 58)(55 57)(60 65)(61 64)(62 63)(66 77)(67 76)(68 75)(69 74)(70 73)(71 72)(79 100)(80 99)(81 98)(82 97)(83 96)(84 95)(85 94)(86 93)(87 92)(88 104)(89 103)(90 102)(91 101)

G:=sub<Sym(104)| (1,88,32,72,21,92,50,63)(2,89,33,73,22,93,51,64)(3,90,34,74,23,94,52,65)(4,91,35,75,24,95,40,53)(5,79,36,76,25,96,41,54)(6,80,37,77,26,97,42,55)(7,81,38,78,14,98,43,56)(8,82,39,66,15,99,44,57)(9,83,27,67,16,100,45,58)(10,84,28,68,17,101,46,59)(11,85,29,69,18,102,47,60)(12,86,30,70,19,103,48,61)(13,87,31,71,20,104,49,62), (53,75)(54,76)(55,77)(56,78)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(64,73)(65,74)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(86,103)(87,104)(88,92)(89,93)(90,94)(91,95), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,41)(28,40)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(53,59)(54,58)(55,57)(60,65)(61,64)(62,63)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,100)(80,99)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,104)(89,103)(90,102)(91,101)>;

G:=Group( (1,88,32,72,21,92,50,63)(2,89,33,73,22,93,51,64)(3,90,34,74,23,94,52,65)(4,91,35,75,24,95,40,53)(5,79,36,76,25,96,41,54)(6,80,37,77,26,97,42,55)(7,81,38,78,14,98,43,56)(8,82,39,66,15,99,44,57)(9,83,27,67,16,100,45,58)(10,84,28,68,17,101,46,59)(11,85,29,69,18,102,47,60)(12,86,30,70,19,103,48,61)(13,87,31,71,20,104,49,62), (53,75)(54,76)(55,77)(56,78)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(64,73)(65,74)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102)(86,103)(87,104)(88,92)(89,93)(90,94)(91,95), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)(27,41)(28,40)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(53,59)(54,58)(55,57)(60,65)(61,64)(62,63)(66,77)(67,76)(68,75)(69,74)(70,73)(71,72)(79,100)(80,99)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,104)(89,103)(90,102)(91,101) );

G=PermutationGroup([[(1,88,32,72,21,92,50,63),(2,89,33,73,22,93,51,64),(3,90,34,74,23,94,52,65),(4,91,35,75,24,95,40,53),(5,79,36,76,25,96,41,54),(6,80,37,77,26,97,42,55),(7,81,38,78,14,98,43,56),(8,82,39,66,15,99,44,57),(9,83,27,67,16,100,45,58),(10,84,28,68,17,101,46,59),(11,85,29,69,18,102,47,60),(12,86,30,70,19,103,48,61),(13,87,31,71,20,104,49,62)], [(53,75),(54,76),(55,77),(56,78),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72),(64,73),(65,74),(79,96),(80,97),(81,98),(82,99),(83,100),(84,101),(85,102),(86,103),(87,104),(88,92),(89,93),(90,94),(91,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(15,26),(16,25),(17,24),(18,23),(19,22),(20,21),(27,41),(28,40),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(53,59),(54,58),(55,57),(60,65),(61,64),(62,63),(66,77),(67,76),(68,75),(69,74),(70,73),(71,72),(79,100),(80,99),(81,98),(82,97),(83,96),(84,95),(85,94),(86,93),(87,92),(88,104),(89,103),(90,102),(91,101)]])

71 conjugacy classes

class 1 2A2B2C2D4A4B8A8B8C8D13A···13F26A···26F26G···26L52A···52L52M···52R104A···104X
order1222244888813···1326···2626···2652···5252···52104···104
size1125252224452522···22···24···42···24···44···4

71 irreducible representations

dim1111122222244
type++++++++++
imageC1C2C2C2C4D4D13D26D52C13⋊D4C4×D13C4.D4C52.46D4
kernelC52.46D4C52.4C4C13×M4(2)C2×D52C22×D13C52M4(2)C2×C4C4C4C22C13C1
# reps11114266121212112

Matrix representation of C52.46D4 in GL4(𝔽313) generated by

1552963110
902210311
5913715817
22210122392
,
1000
0100
1552963120
902210312
,
6100
27725500
26119861
12752277255
,
2353700
647800
29527023537
100186478
G:=sub<GL(4,GF(313))| [155,90,59,222,296,221,137,101,311,0,158,223,0,311,17,92],[1,0,155,90,0,1,296,221,0,0,312,0,0,0,0,312],[6,277,261,127,1,255,198,52,0,0,6,277,0,0,1,255],[235,64,295,100,37,78,270,18,0,0,235,64,0,0,37,78] >;

C52.46D4 in GAP, Magma, Sage, TeX

C_{52}._{46}D_4
% in TeX

G:=Group("C52.46D4");
// GroupNames label

G:=SmallGroup(416,30);
// by ID

G=gap.SmallGroup(416,30);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,121,31,362,86,297,13829]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^13=d^2=1,b*a*b=a^5,a*c=c*a,d*a*d=a*b,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C52.46D4 in TeX

׿
×
𝔽