extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C2×C26) = C13×C4.D4 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 104 | 4 | (C2xC4).1(C2xC26) | 416,50 |
(C2×C4).2(C2×C26) = C13×C4.10D4 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | 4 | (C2xC4).2(C2xC26) | 416,51 |
(C2×C4).3(C2×C26) = C13×C4⋊D4 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | | (C2xC4).3(C2xC26) | 416,182 |
(C2×C4).4(C2×C26) = C13×C22⋊Q8 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | | (C2xC4).4(C2xC26) | 416,183 |
(C2×C4).5(C2×C26) = C13×C22.D4 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | | (C2xC4).5(C2xC26) | 416,184 |
(C2×C4).6(C2×C26) = C13×C4.4D4 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | | (C2xC4).6(C2xC26) | 416,185 |
(C2×C4).7(C2×C26) = C13×C42.C2 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 416 | | (C2xC4).7(C2xC26) | 416,186 |
(C2×C4).8(C2×C26) = C13×C42⋊2C2 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | | (C2xC4).8(C2xC26) | 416,187 |
(C2×C4).9(C2×C26) = C13×C4⋊Q8 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 416 | | (C2xC4).9(C2xC26) | 416,189 |
(C2×C4).10(C2×C26) = C13×C8⋊C22 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 104 | 4 | (C2xC4).10(C2xC26) | 416,197 |
(C2×C4).11(C2×C26) = C13×C8.C22 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | 4 | (C2xC4).11(C2xC26) | 416,198 |
(C2×C4).12(C2×C26) = C13×2- 1+4 | φ: C2×C26/C13 → C22 ⊆ Aut C2×C4 | 208 | 4 | (C2xC4).12(C2xC26) | 416,232 |
(C2×C4).13(C2×C26) = C4⋊C4×C26 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 416 | | (C2xC4).13(C2xC26) | 416,177 |
(C2×C4).14(C2×C26) = C13×C42⋊C2 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | | (C2xC4).14(C2xC26) | 416,178 |
(C2×C4).15(C2×C26) = D4×C52 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | | (C2xC4).15(C2xC26) | 416,179 |
(C2×C4).16(C2×C26) = Q8×C52 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 416 | | (C2xC4).16(C2xC26) | 416,180 |
(C2×C4).17(C2×C26) = C13×D4⋊C4 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | | (C2xC4).17(C2xC26) | 416,52 |
(C2×C4).18(C2×C26) = C13×Q8⋊C4 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 416 | | (C2xC4).18(C2xC26) | 416,53 |
(C2×C4).19(C2×C26) = C13×C4≀C2 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 104 | 2 | (C2xC4).19(C2xC26) | 416,54 |
(C2×C4).20(C2×C26) = C13×C4.Q8 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 416 | | (C2xC4).20(C2xC26) | 416,56 |
(C2×C4).21(C2×C26) = C13×C2.D8 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 416 | | (C2xC4).21(C2xC26) | 416,57 |
(C2×C4).22(C2×C26) = C13×C8.C4 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | 2 | (C2xC4).22(C2xC26) | 416,58 |
(C2×C4).23(C2×C26) = C13×C4⋊1D4 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | | (C2xC4).23(C2xC26) | 416,188 |
(C2×C4).24(C2×C26) = C13×C8○D4 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | 2 | (C2xC4).24(C2xC26) | 416,192 |
(C2×C4).25(C2×C26) = D8×C26 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | | (C2xC4).25(C2xC26) | 416,193 |
(C2×C4).26(C2×C26) = SD16×C26 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | | (C2xC4).26(C2xC26) | 416,194 |
(C2×C4).27(C2×C26) = Q16×C26 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 416 | | (C2xC4).27(C2xC26) | 416,195 |
(C2×C4).28(C2×C26) = C13×C4○D8 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 208 | 2 | (C2xC4).28(C2xC26) | 416,196 |
(C2×C4).29(C2×C26) = Q8×C2×C26 | φ: C2×C26/C26 → C2 ⊆ Aut C2×C4 | 416 | | (C2xC4).29(C2xC26) | 416,229 |
(C2×C4).30(C2×C26) = C13×C8⋊C4 | central extension (φ=1) | 416 | | (C2xC4).30(C2xC26) | 416,47 |
(C2×C4).31(C2×C26) = C13×C22⋊C8 | central extension (φ=1) | 208 | | (C2xC4).31(C2xC26) | 416,48 |
(C2×C4).32(C2×C26) = C13×C4⋊C8 | central extension (φ=1) | 416 | | (C2xC4).32(C2xC26) | 416,55 |
(C2×C4).33(C2×C26) = M4(2)×C26 | central extension (φ=1) | 208 | | (C2xC4).33(C2xC26) | 416,191 |