Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C2×C18

Direct product G=N×Q with N=C2×C6 and Q=C2×C18
dρLabelID
C22×C6×C18432C2^2xC6xC18432,562

Semidirect products G=N:Q with N=C2×C6 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊(C2×C18) = C2×S3×C3.A4φ: C2×C18/C6C6 ⊆ Aut C2×C6366(C2xC6):(C2xC18)432,541
(C2×C6)⋊2(C2×C18) = S3×D4×C9φ: C2×C18/C9C22 ⊆ Aut C2×C6724(C2xC6):2(C2xC18)432,358
(C2×C6)⋊3(C2×C18) = C2×C6×C3.A4φ: C2×C18/C2×C6C3 ⊆ Aut C2×C6108(C2xC6):3(C2xC18)432,548
(C2×C6)⋊4(C2×C18) = D4×C3×C18φ: C2×C18/C18C2 ⊆ Aut C2×C6216(C2xC6):4(C2xC18)432,403
(C2×C6)⋊5(C2×C18) = C18×C3⋊D4φ: C2×C18/C18C2 ⊆ Aut C2×C672(C2xC6):5(C2xC18)432,375
(C2×C6)⋊6(C2×C18) = S3×C22×C18φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6):6(C2xC18)432,557

Non-split extensions G=N.Q with N=C2×C6 and Q=C2×C18
extensionφ:Q→Aut NdρLabelID
(C2×C6).(C2×C18) = C9×D42S3φ: C2×C18/C9C22 ⊆ Aut C2×C6724(C2xC6).(C2xC18)432,359
(C2×C6).2(C2×C18) = C22×C9.A4φ: C2×C18/C2×C6C3 ⊆ Aut C2×C6108(C2xC6).2(C2xC18)432,225
(C2×C6).3(C2×C18) = D4×C54φ: C2×C18/C18C2 ⊆ Aut C2×C6216(C2xC6).3(C2xC18)432,54
(C2×C6).4(C2×C18) = C4○D4×C27φ: C2×C18/C18C2 ⊆ Aut C2×C62162(C2xC6).4(C2xC18)432,56
(C2×C6).5(C2×C18) = C4○D4×C3×C9φ: C2×C18/C18C2 ⊆ Aut C2×C6216(C2xC6).5(C2xC18)432,409
(C2×C6).6(C2×C18) = Dic3×C36φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).6(C2xC18)432,131
(C2×C6).7(C2×C18) = C9×Dic3⋊C4φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).7(C2xC18)432,132
(C2×C6).8(C2×C18) = C9×C4⋊Dic3φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).8(C2xC18)432,133
(C2×C6).9(C2×C18) = C9×D6⋊C4φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).9(C2xC18)432,135
(C2×C6).10(C2×C18) = C9×C6.D4φ: C2×C18/C18C2 ⊆ Aut C2×C672(C2xC6).10(C2xC18)432,165
(C2×C6).11(C2×C18) = C18×Dic6φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).11(C2xC18)432,341
(C2×C6).12(C2×C18) = S3×C2×C36φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).12(C2xC18)432,345
(C2×C6).13(C2×C18) = C18×D12φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).13(C2xC18)432,346
(C2×C6).14(C2×C18) = C9×C4○D12φ: C2×C18/C18C2 ⊆ Aut C2×C6722(C2xC6).14(C2xC18)432,347
(C2×C6).15(C2×C18) = Dic3×C2×C18φ: C2×C18/C18C2 ⊆ Aut C2×C6144(C2xC6).15(C2xC18)432,373
(C2×C6).16(C2×C18) = C22⋊C4×C27central extension (φ=1)216(C2xC6).16(C2xC18)432,21
(C2×C6).17(C2×C18) = C4⋊C4×C27central extension (φ=1)432(C2xC6).17(C2xC18)432,22
(C2×C6).18(C2×C18) = Q8×C54central extension (φ=1)432(C2xC6).18(C2xC18)432,55
(C2×C6).19(C2×C18) = C22⋊C4×C3×C9central extension (φ=1)216(C2xC6).19(C2xC18)432,203
(C2×C6).20(C2×C18) = C4⋊C4×C3×C9central extension (φ=1)432(C2xC6).20(C2xC18)432,206
(C2×C6).21(C2×C18) = Q8×C3×C18central extension (φ=1)432(C2xC6).21(C2xC18)432,406

׿
×
𝔽