extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1(C3⋊D4) = D36.S3 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C18 | 144 | 4- | C18.1(C3:D4) | 432,62 |
C18.2(C3⋊D4) = C6.D36 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C18 | 72 | 4+ | C18.2(C3:D4) | 432,63 |
C18.3(C3⋊D4) = C3⋊D72 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C18 | 72 | 4+ | C18.3(C3:D4) | 432,64 |
C18.4(C3⋊D4) = C3⋊Dic36 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C18 | 144 | 4- | C18.4(C3:D4) | 432,65 |
C18.5(C3⋊D4) = Dic3⋊Dic9 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C18 | 144 | | C18.5(C3:D4) | 432,90 |
C18.6(C3⋊D4) = C6.18D36 | φ: C3⋊D4/Dic3 → C2 ⊆ Aut C18 | 72 | | C18.6(C3:D4) | 432,92 |
C18.7(C3⋊D4) = D36⋊S3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C18 | 144 | 4 | C18.7(C3:D4) | 432,68 |
C18.8(C3⋊D4) = D12.D9 | φ: C3⋊D4/D6 → C2 ⊆ Aut C18 | 144 | 4 | C18.8(C3:D4) | 432,70 |
C18.9(C3⋊D4) = Dic6⋊D9 | φ: C3⋊D4/D6 → C2 ⊆ Aut C18 | 144 | 4 | C18.9(C3:D4) | 432,72 |
C18.10(C3⋊D4) = C12.D18 | φ: C3⋊D4/D6 → C2 ⊆ Aut C18 | 144 | 4 | C18.10(C3:D4) | 432,74 |
C18.11(C3⋊D4) = C18.Dic6 | φ: C3⋊D4/D6 → C2 ⊆ Aut C18 | 144 | | C18.11(C3:D4) | 432,89 |
C18.12(C3⋊D4) = D18⋊Dic3 | φ: C3⋊D4/D6 → C2 ⊆ Aut C18 | 144 | | C18.12(C3:D4) | 432,91 |
C18.13(C3⋊D4) = D6⋊Dic9 | φ: C3⋊D4/D6 → C2 ⊆ Aut C18 | 144 | | C18.13(C3:D4) | 432,93 |
C18.14(C3⋊D4) = Dic27⋊C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 432 | | C18.14(C3:D4) | 432,12 |
C18.15(C3⋊D4) = D54⋊C4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.15(C3:D4) | 432,14 |
C18.16(C3⋊D4) = D4.D27 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | 4- | C18.16(C3:D4) | 432,15 |
C18.17(C3⋊D4) = D4⋊D27 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | 4+ | C18.17(C3:D4) | 432,16 |
C18.18(C3⋊D4) = C27⋊Q16 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 432 | 4- | C18.18(C3:D4) | 432,17 |
C18.19(C3⋊D4) = Q8⋊2D27 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | 4+ | C18.19(C3:D4) | 432,18 |
C18.20(C3⋊D4) = C54.D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.20(C3:D4) | 432,19 |
C18.21(C3⋊D4) = C2×C27⋊D4 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.21(C3:D4) | 432,52 |
C18.22(C3⋊D4) = C6.Dic18 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 432 | | C18.22(C3:D4) | 432,181 |
C18.23(C3⋊D4) = C6.11D36 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.23(C3:D4) | 432,183 |
C18.24(C3⋊D4) = C36.17D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.24(C3:D4) | 432,190 |
C18.25(C3⋊D4) = C36.18D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.25(C3:D4) | 432,191 |
C18.26(C3⋊D4) = C36.19D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 432 | | C18.26(C3:D4) | 432,194 |
C18.27(C3⋊D4) = C36.20D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.27(C3:D4) | 432,195 |
C18.28(C3⋊D4) = C62.127D6 | φ: C3⋊D4/C2×C6 → C2 ⊆ Aut C18 | 216 | | C18.28(C3:D4) | 432,198 |
C18.29(C3⋊D4) = C9×Dic3⋊C4 | central extension (φ=1) | 144 | | C18.29(C3:D4) | 432,132 |
C18.30(C3⋊D4) = C9×D6⋊C4 | central extension (φ=1) | 144 | | C18.30(C3:D4) | 432,135 |
C18.31(C3⋊D4) = C9×D4⋊S3 | central extension (φ=1) | 72 | 4 | C18.31(C3:D4) | 432,150 |
C18.32(C3⋊D4) = C9×D4.S3 | central extension (φ=1) | 72 | 4 | C18.32(C3:D4) | 432,151 |
C18.33(C3⋊D4) = C9×Q8⋊2S3 | central extension (φ=1) | 144 | 4 | C18.33(C3:D4) | 432,158 |
C18.34(C3⋊D4) = C9×C3⋊Q16 | central extension (φ=1) | 144 | 4 | C18.34(C3:D4) | 432,159 |
C18.35(C3⋊D4) = C9×C6.D4 | central extension (φ=1) | 72 | | C18.35(C3:D4) | 432,165 |