Extensions 1→N→G→Q→1 with N=C18 and Q=C3⋊D4

Direct product G=N×Q with N=C18 and Q=C3⋊D4
dρLabelID
C18×C3⋊D472C18xC3:D4432,375

Semidirect products G=N:Q with N=C18 and Q=C3⋊D4
extensionφ:Q→Aut NdρLabelID
C181(C3⋊D4) = C2×C3⋊D36φ: C3⋊D4/Dic3C2 ⊆ Aut C1872C18:1(C3:D4)432,307
C182(C3⋊D4) = C2×D6⋊D9φ: C3⋊D4/D6C2 ⊆ Aut C18144C18:2(C3:D4)432,311
C183(C3⋊D4) = C2×C6.D18φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18:3(C3:D4)432,397

Non-split extensions G=N.Q with N=C18 and Q=C3⋊D4
extensionφ:Q→Aut NdρLabelID
C18.1(C3⋊D4) = D36.S3φ: C3⋊D4/Dic3C2 ⊆ Aut C181444-C18.1(C3:D4)432,62
C18.2(C3⋊D4) = C6.D36φ: C3⋊D4/Dic3C2 ⊆ Aut C18724+C18.2(C3:D4)432,63
C18.3(C3⋊D4) = C3⋊D72φ: C3⋊D4/Dic3C2 ⊆ Aut C18724+C18.3(C3:D4)432,64
C18.4(C3⋊D4) = C3⋊Dic36φ: C3⋊D4/Dic3C2 ⊆ Aut C181444-C18.4(C3:D4)432,65
C18.5(C3⋊D4) = Dic3⋊Dic9φ: C3⋊D4/Dic3C2 ⊆ Aut C18144C18.5(C3:D4)432,90
C18.6(C3⋊D4) = C6.18D36φ: C3⋊D4/Dic3C2 ⊆ Aut C1872C18.6(C3:D4)432,92
C18.7(C3⋊D4) = D36⋊S3φ: C3⋊D4/D6C2 ⊆ Aut C181444C18.7(C3:D4)432,68
C18.8(C3⋊D4) = D12.D9φ: C3⋊D4/D6C2 ⊆ Aut C181444C18.8(C3:D4)432,70
C18.9(C3⋊D4) = Dic6⋊D9φ: C3⋊D4/D6C2 ⊆ Aut C181444C18.9(C3:D4)432,72
C18.10(C3⋊D4) = C12.D18φ: C3⋊D4/D6C2 ⊆ Aut C181444C18.10(C3:D4)432,74
C18.11(C3⋊D4) = C18.Dic6φ: C3⋊D4/D6C2 ⊆ Aut C18144C18.11(C3:D4)432,89
C18.12(C3⋊D4) = D18⋊Dic3φ: C3⋊D4/D6C2 ⊆ Aut C18144C18.12(C3:D4)432,91
C18.13(C3⋊D4) = D6⋊Dic9φ: C3⋊D4/D6C2 ⊆ Aut C18144C18.13(C3:D4)432,93
C18.14(C3⋊D4) = Dic27⋊C4φ: C3⋊D4/C2×C6C2 ⊆ Aut C18432C18.14(C3:D4)432,12
C18.15(C3⋊D4) = D54⋊C4φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.15(C3:D4)432,14
C18.16(C3⋊D4) = D4.D27φ: C3⋊D4/C2×C6C2 ⊆ Aut C182164-C18.16(C3:D4)432,15
C18.17(C3⋊D4) = D4⋊D27φ: C3⋊D4/C2×C6C2 ⊆ Aut C182164+C18.17(C3:D4)432,16
C18.18(C3⋊D4) = C27⋊Q16φ: C3⋊D4/C2×C6C2 ⊆ Aut C184324-C18.18(C3:D4)432,17
C18.19(C3⋊D4) = Q82D27φ: C3⋊D4/C2×C6C2 ⊆ Aut C182164+C18.19(C3:D4)432,18
C18.20(C3⋊D4) = C54.D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.20(C3:D4)432,19
C18.21(C3⋊D4) = C2×C27⋊D4φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.21(C3:D4)432,52
C18.22(C3⋊D4) = C6.Dic18φ: C3⋊D4/C2×C6C2 ⊆ Aut C18432C18.22(C3:D4)432,181
C18.23(C3⋊D4) = C6.11D36φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.23(C3:D4)432,183
C18.24(C3⋊D4) = C36.17D6φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.24(C3:D4)432,190
C18.25(C3⋊D4) = C36.18D6φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.25(C3:D4)432,191
C18.26(C3⋊D4) = C36.19D6φ: C3⋊D4/C2×C6C2 ⊆ Aut C18432C18.26(C3:D4)432,194
C18.27(C3⋊D4) = C36.20D6φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.27(C3:D4)432,195
C18.28(C3⋊D4) = C62.127D6φ: C3⋊D4/C2×C6C2 ⊆ Aut C18216C18.28(C3:D4)432,198
C18.29(C3⋊D4) = C9×Dic3⋊C4central extension (φ=1)144C18.29(C3:D4)432,132
C18.30(C3⋊D4) = C9×D6⋊C4central extension (φ=1)144C18.30(C3:D4)432,135
C18.31(C3⋊D4) = C9×D4⋊S3central extension (φ=1)724C18.31(C3:D4)432,150
C18.32(C3⋊D4) = C9×D4.S3central extension (φ=1)724C18.32(C3:D4)432,151
C18.33(C3⋊D4) = C9×Q82S3central extension (φ=1)1444C18.33(C3:D4)432,158
C18.34(C3⋊D4) = C9×C3⋊Q16central extension (φ=1)1444C18.34(C3:D4)432,159
C18.35(C3⋊D4) = C9×C6.D4central extension (φ=1)72C18.35(C3:D4)432,165

׿
×
𝔽