# Extensions 1→N→G→Q→1 with N=C33 and Q=M4(2)

Direct product G=N×Q with N=C33 and Q=M4(2)
dρLabelID
M4(2)×C33216M4(2)xC3^3432,516

Semidirect products G=N:Q with N=C33 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C331M4(2) = C33⋊M4(2)φ: M4(2)/C2C2×C4 ⊆ Aut C33488-C3^3:1M4(2)432,572
C332M4(2) = C332M4(2)φ: M4(2)/C2C2×C4 ⊆ Aut C33248+C3^3:2M4(2)432,573
C333M4(2) = C3×C32⋊M4(2)φ: M4(2)/C4C4 ⊆ Aut C33484C3^3:3M4(2)432,629
C334M4(2) = C334M4(2)φ: M4(2)/C4C4 ⊆ Aut C33484C3^3:4M4(2)432,636
C335M4(2) = C3×D6.Dic3φ: M4(2)/C4C22 ⊆ Aut C33484C3^3:5M4(2)432,416
C336M4(2) = C3×C12.31D6φ: M4(2)/C4C22 ⊆ Aut C33484C3^3:6M4(2)432,417
C337M4(2) = C337M4(2)φ: M4(2)/C4C22 ⊆ Aut C33144C3^3:7M4(2)432,433
C338M4(2) = C338M4(2)φ: M4(2)/C4C22 ⊆ Aut C33144C3^3:8M4(2)432,434
C339M4(2) = C339M4(2)φ: M4(2)/C4C22 ⊆ Aut C3372C3^3:9M4(2)432,435
C3310M4(2) = C3310M4(2)φ: M4(2)/C4C22 ⊆ Aut C33484C3^3:10M4(2)432,456
C3311M4(2) = C3×C62.C4φ: M4(2)/C22C4 ⊆ Aut C33244C3^3:11M4(2)432,633
C3312M4(2) = C3312M4(2)φ: M4(2)/C22C4 ⊆ Aut C33244C3^3:12M4(2)432,640
C3313M4(2) = C32×C8⋊S3φ: M4(2)/C8C2 ⊆ Aut C33144C3^3:13M4(2)432,465
C3314M4(2) = C3×C24⋊S3φ: M4(2)/C8C2 ⊆ Aut C33144C3^3:14M4(2)432,481
C3315M4(2) = C3315M4(2)φ: M4(2)/C8C2 ⊆ Aut C33216C3^3:15M4(2)432,497
C3316M4(2) = C32×C4.Dic3φ: M4(2)/C2×C4C2 ⊆ Aut C3372C3^3:16M4(2)432,470
C3317M4(2) = C3×C12.58D6φ: M4(2)/C2×C4C2 ⊆ Aut C3372C3^3:17M4(2)432,486
C3318M4(2) = C3318M4(2)φ: M4(2)/C2×C4C2 ⊆ Aut C33216C3^3:18M4(2)432,502

׿
×
𝔽